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Abstract
Extracting action sequences from texts is challeng-
ing, as it requires commonsense inferences based
on world knowledge. Although there has been
work on extracting action scripts, instructions, nav-
igation actions, etc., they require either the set of
candidate actions be provided in advance, or ac-
tion descriptions are restricted to a specific form,
e.g., description templates. In this paper we aim
to extract action sequences from texts in free natu-
ral language, i.e., without any restricted templates,
provided the set of actions is unknown. We propose
to extract action sequences from texts based on the
deep reinforcement learning framework. Specifi-
cally, we view “selecting” or “eliminating” words
from texts as “actions”, and texts associated with
actions as “states”. We build Q-networks to learn
policies of extracting actions and extract plans from
the labeled texts. We demonstrate the effectiveness
of our approach on several datasets with compari-
son to state-of-the-art approaches.

1 Introduction
AI agents will increasingly find assistive roles in homes, labs,
factories and public places. The widespread adoption of
conversational agents such as Alexa, Siri and Google Home
demonstrate the natural demand for such assistive agents. To
go beyond supporting the simplistic “what is the weather?”
queries however, these agents need domain-specific knowl-
edge such as the recipes and standard operating procedures.
While it is possible to hand-code such knowledge (as is done
by most of the “skills” used by Alexa-like agents), ultimately
that is too labor intensive an option. One idea is to have
these agents automatically “read” instructional texts, typi-
cally written for human workers, and convert them into ac-
tion sequences and plans for later use (such as learning do-
main models [Zhuo et al., 2014; Zhuo and Yang, 2014] or
model-lite planning [Zhuo and Kambhampati, 2017]). Ex-
tracting action sequences from natural language texts meant
for human consumption is however challenging, as it requires
agents to understand complex contexts of actions.

∗Corrsponding Author

For example, in Figure 1, given a document of action
descriptions (the left part of Figure 1) such as “Cook the
rice the day before, or use leftover rice in the refrigerator.
The important thing to remember is not to heat up the rice,
but keep it cold.”, which addresses the procedure of making
egg fired rice, an action sequence of “cook(rice), keep(rice,
cold)” or “use(leftover rice), keep(rice, cold)” is expected
to be extracted. This task is challenging. For the first sen-
tence, the agent needs to learn to figure out that “cook” and
“use” are exclusive (denoted by “EX” in the middle of Fig-
ure 1), meaning that we could extract only one of them;
for the second sentence, we need to learn to understand that
among the three verbs “remember”, “heat” and “keep”, the
last one is the best because the goal of this step is to “keep
the rice cold” (denoted by “ES” indicating this action is es-
sential). There is also another action “Recycle” denoted by
“OP” indicating this action can be extracted optionally. We
also need to consider action arguments which can be either
“EX” or “ES” as well (as shown in the middle of Figure
1). The possible action sequences extracted are shown in
the right part of Figure 1. This extraction problem is dif-
ferent from sequence labeling and dependency parsing, since
we aim to extract “meaningful” or “correct” action sequences
(which suggests some actions should be ignored because
they are exclusive), such as “cook(rice), keep(rice, cold)”,
instead of “cook(rice),use(leftover rice), remember(thing),
heat(rice), keep(rice, cold)” as would be extracted by LSTM-
CRF models[Ma and Hovy, 2016] or external NLP tools.
There has been work on extracting action sequences from

action descriptions. For example, [Branavan et al., 2009] pro-
pose to map instructions to sequences of executable actions
using reinforcement learning. [Mei et al., 2016; Daniele et
al., 2017] interpret natural instructions as action sequences
or generate navigational action description using an encoder-
aligner-decoder structure. Despite the success of those ap-
proaches, they all require a limited set of action names given
as input, which are mapped to action descriptions. Another
approach, proposed by [Lindsay et al., 2017], builds action
sequences from texts based on dependency parsers and then
builds planning models, assuming texts are in restricted tem-
plates when describing actions.
In this paper, we aim to extract meaningful action se-

quences from texts in free natural language, i.e., without any
restricted templates, even when the candidate set of actions
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Cook the rice the day before, or use leftover 
rice in the refrigerator.  The important thing 
to remember is not to heat up the rice, but 
keep it cold.  In a bowl, add 1 tablespoon of 
oil to rice.  Use a spoon or your hands to 
work the oil into the rice, evenly coating the 
rice.  Transfer the rice to a colander and 
drain.  Combine eggs and salt in a small bowl 
and gently whisk until blended.  Heat 1 
tablespoon oil in a wok.  Add whisked eggs 
and cumin seeds to wok.  Stir frequently, 
working the eggs to a scramble.  Heat the 
remaining oil in the wok.  If desired, you can 
recycle some of the oil that drained from the 
rice.  Add the garlic and onion to the wok.  
Stir-fry together over high heat for about 5 
minutes or until the onion looks transparent, 
but is not soft.  Add the rice, eggs, soy sauce, 
chili sauce, vinegar, and celery.  Mix 
together, continuing to stir-fry over high 
heat for 1-2 minutes while stirring 
frequently.  Spoon onto a plate and serve. 
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Æ …  Æ Work (eggs) Æ Heat (oil) Æ … 
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x Use (leftover rice) Æ Keep (rice, cold) 
Æ Add (oil) Æ Use (spoon) Æ Work 
(oil, rice) Æ …  Æ Work (eggs) Æ Heat 
(oil) Æ … Æ Serve ()

x Use (leftover rice) Æ Keep (rice, cold) 
Æ Add (oil) Æ Use (hands) Æ Work 
(oil, rice) Æ …  Æ Work (eggs) Æ Heat 
(oil) Æ … Æ Serve ()

x Use (leftover rice) Æ Keep (rice, cold) 
Æ Add (oil) Æ Use (hands) Æ Work 
(oil, rice) Æ …  Æ Work (eggs) Æ 
Recycle (oil) Æ Heat (oil) Æ … Æ 
Serve ()

x ...

Figure 1: Illustration of our action sequence extraction problem

is unknown. We propose an approach called EASDRL, which
stands for Extracting Action Sequences from texts based on
Deep Reinforcement Learning. In EASDRL, we view texts
associated with actions as “states”, and associating words in
texts with labels as “actions”, and then build deep Q-networks
to extract action sequences from texts. We capture complex
relations among actions by considering previously extracted
actions as parts of states for deciding the choice of next op-
erations. In other words, once we know action “cook(rice)”
has been extracted and included as parts of states, we will
choose to extract next action “keep(rice, cold)” instead of
“use(leftover rice)” in the above-mentioned example.
In the remainder of paper, we first review previous work

related to our approach. After that we give a formal definition
of our plan extraction problem and present EASDRL in detail.
We then evaluate EASDRL with comparison to state-of-the-
art approaches and conclude the paper with future work.

2 Related Work
There have been approaches related to our work besides
the ones we mentioned in the introduction section. Map-
ping route instructions [Macmahon et al., 2006] to action se-
quences has aroused great interest in natural language pro-
cessing community. Early approaches, such as [Chen and
Mooney, 2011; Kim and Mooney, 2013], largely depend on
specialized resources, i.e. semantic parsers, learned lexicons
and re-rankers. Recently, LSTM encoder-decoder structure
[Mei et al., 2016] has been applied to this problem and gets
decent performance in processing single-sentence instruc-
tions, however, it could not handle multi-sentence texts well.
There is also a lot of work on learning STRIPS represen-

tation actions [Pomarlan et al., 2017] from texts. [Sil et al.,
2010; Sil and Yates, 2011] learn sentence patterns and lexi-
cons or use off-the-shelf toolkits, i.e., OpenNLP1 and Stan-
ford CoreNLP2. [Lindsay et al., 2017] also build action mod-
els with the help of LOCM [Cresswell et al., 2009] after ex-
tracting action sequences by using NLP tools. These tools are
trained for universal natural language processing tasks, they
cannot solve the complex action sequence extraction prob-
lem well, and their performance will be greatly affected by
POS-tagging and dependency parsing results. In this paper
we aim to build a model that learns to directly extract action
sequences without external tools.

3 Problem Definition
Our training data can be defined by Φ = {⟨X,Y ⟩}, where
X = ⟨w1, w2, . . . , wN ⟩ is a sequence of words and Y =
⟨y1, y2, . . . , yN ⟩ is a sequence of annotations. If wi is
not an action name, yi is ∅. Otherwise, yi is a tuple
(ActType, {ExActId}, {⟨ArgId,ExArgId⟩}) to describe
type of the action name and its corresponding arguments.
ActType indicates the type of action ai corresponding to wi,
which can be one of essential, optional and exclusive. The
type essential suggests the corresponding action ai to be
extracted, optional suggests ai that can be “optionally” ex-
tracted, exclusive suggests ai that is “exclusive” with other
actions indicated by the set {ExActId} (in other words, ei-
ther ai or exactly one action in {ExActId} can be extracted).
ExActId is the index of the action exclusive with ai. We de-
note the size of {ExActId} by M , i.e., |{ExActId}| = M .

1https://opennlp.apache.org/
2http://stanfordnlp.github.io/CoreNLP/
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Note that “M = 0” indicates the typeActType of action ai is
either essential or optional, and “M ̸= 0” indicates ActType
is exclusive. ArgId is the index of the word composing ar-
guments of ai, and ExArgId is the index of words exclu-
sive with ArgId. For example, as shown in Figure 2, given
a text denoted by X , its corresponding annotation is shown
in the figure denoted by Y . In y1, “{11}” indicates the ac-
tion exclusive with w1 (i.e., “Hang”) is “opt” with index 11.
“{⟨3, 5⟩, ⟨9, ⟩}” indicates the corresponding arguments “en-
graving” and “lithograph” are exclusive, and the other ar-
gument “frame” with index 9 is essential since it is exclusive
with an empty index, likewise for y11. For y2, . . . , y10 and
y12, . . . , y15, they are empty since their corresponding words
are not action names. From Y , we can generate three possi-
ble actions as shown at the bottom of Figure 2.
As we can see from the training data, it is uneasy to build

a supervised learning model to directly predict annotations
for new texts X , since annotations yi is complex and the
size |yi| varies with respect to different wi (different ac-
tion names have different arguments with different lengths).
We seek to build a unified framework to predict simple “la-
bels” (corresponding to “actions” in reinforcement learning)
for extracting action names and their arguments. We ex-
ploit the framework to learn two models to predict action
names and arguments, respectively. Specifically, given a new
text X , we would like to predict a sequence of operations
O = ⟨o1, o2, . . . , oN ⟩ (instead of annotations in Φ) on X ,
where oi is an operation that selects or eliminates word
wi in X . In other words, when predicting action names (or
arguments), oi = Select indicateswi is extracted as an action
name (or argument), while oi = Eliminate indicates wi is
not extracted as an action name (or argument).
In summary, our action sequence extraction problem can be

defined by: given a set of training data Φ, we aim to learn two
models (with the same framework) to predict action names
and arguments for new textsX , respectively. The two models
are

F1
Φ(O|X; θ1) (1)

and
F2

Φ(O|X, a; θ2), (2)
where θ1 and θ2 are parameters to be learnt for predicting
action names and arguments, respectively. a is an action name
extracted based on F1

Φ. We train F2
Φ for extracting arguments

based on ground-truth action names. When testing, we extract
arguments based on the action names extracted by F1

Φ. We
will present the two models in detail in the following sections.

4 Our EASDRL Approach
In this section we present the details of EASDRL. As men-
tioned in the introduction section, our action sequence ex-
traction problem can be viewed as a reinforcement learning
problem. We thus first describe how to build states and op-
erations given text X , and then present deep Q-networks to
build the Q-functions. Finally we present the training proce-
dure and give an overview of EASDRL. Note that we will use
the term operation to represent the meaning of “action” in re-
inforcement learning since the term “action” has been used to
represent an action name with arguments in this work.

4.1 Generating State Representations
In this subsection we address how to generate state represen-
tations from texts. As defined in the problem definition sec-
tion, the space of operations is {Select, Eliminate}. We
view texts associated with operations as “states”. Specif-
ically, we represent a text X by a sequence of vectors
⟨w1,w2, . . . ,wN ⟩, where wi ∈ RK1 is a K1-dimension
real-valued vector [Mikolov et al., 2013], representing the
ith word in X . Words of texts stay the same when we per-
form operations, so we embed operations in state representa-
tions to generate state transitions. We extend the set of oper-
ations to {NULL, Select, Eliminate} where “NULL” indi-
cates a word has not been processed. We represent the oper-
ation sequence O corresponding to X by a sequence of vec-
tors ⟨o1,o2, . . . ,oN ⟩, where oi ∈ RK2 is a K2-dimension
real-valued vector. In order to balance the dimension of
oi and wi, we generate each oi by a repeat-representation
[·]K2 , i.e., if K2 = 1, oi ∈ {[0], [1], [2]}, and if K2 = 3,
oi ∈ {[0, 0, 0], [1, 1, 1], [2, 2, 2]}, where {0, 1, 2} corresponds
to {NULL, Select, Eliminate}, respectively. We define a
state s as a tuple ⟨X,O⟩, where X is a matrix in RK1×N , O
is a matrix inRK2×N . The ith row of s is denoted by [wi,oi].
The space of states is denoted by S . A state s is changed into
a new state s′ after performing an operation o′

i on s, such that
s′ = ⟨X,O′⟩, whereO′ = ⟨o1, . . . ,oi−1,o′

i,oi+1, . . . ,oN ⟩.
For example, consider a text “Cook the rice the day before...”
and a state s corresponding to it is shown in the left part of
Figure 3. After performing an operation o1 = Select on s,
a new state s′ (the right part) will be generated. In this way,
we can learn θ1 in F1

Φ (Equation (1)) based on s with deep
Q-networks as introduced in the next subsection.
After F1

Φ is learnt, we can use it to predict action names,
and then exploit the predicted action names to extract argu-
ments by training F2

Φ (Equation (2)). To do this, we would
like to encode the predicted action names in states to gener-
ate a new state representation ŝ for learning θ2 in F2

Φ. We
denote by wa the word corresponding to the action name.
We build ŝ by appending the distance between wa and wj

based on their indices, such that ŝ = ⟨X,D,O⟩, where D =
⟨d1,d2, . . . ,dN ⟩, where dj = [dj ]K3 and dj = |a−j|. Note
that dj is a K3-dimension real-valued vector using repeat-
representation [·]K3 . In this way we can learn F2

Φ based on
ŝ with the same deep Q-networks. Note that in our experi-
ments, we found that the results were the best when we set
K1 = K2 = K3, suggesting the impact of word vectors, dis-
tance vectors and operation vectors was generally identical.

4.2 Deep Q-networks for Operation Execution
Given the formulation of states and operations, we aim to ex-
tract action sequences from texts. We construct sequences by
repeatedly choosing operations given current states, and ap-
plying operations on current states to achieve new states.
In Q-Learning, this process can be described by a Q-

function and updating the Q-function iteratively according to
Bellman equation. In our action sequence extraction problem,
actions are composed of action names and action arguments.
We need to first extract action names from texts and use the
extracted action names to further extract action arguments.
Specifically, we define two Q-functions Q(s, o) and Q(ŝ, o),
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X:            Hang an engraving or lithograph in a black frame or opt for an unframed canvas
Index:            1       2          3           4          5           6   7     8          9     10  11   12  13         14            15

exclusive actions

exclusive arguments essential argument essential argument

Hang(engraving, frame) Hang(lithograph, frame) opt(canvas)

Y:      < (exclusive,  {11},  {<3,  5>, <9,  >}), (), ..., (), (exclusive,  {1},  {<15,  >}), (), ... >
... ...

Figure 2: Illustration of text X and its corresponding annotation Y
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Figure 3: Illustration of states and operations

where ŝ contains the information of extracted action names,
as defined in the last subsection. The update procedure based
on Bellman equation and deep Q-networks can be defined by:

Qi+1(s, o; θ1) = E
{
r + γmax

o′
Qi(s

′, o′; θ1)|s, o
}

(3)

Qi+1(ŝ, o; θ2) = E
{
r + γmax

o′
Qi(ŝ

′, o′; θ2)|ŝ, o
}

(4)

where Qi+1(s, o; θ1) and Qi+1(ŝ, o; θ2) correspond to the
deep Q-networks [Mnih et al., 2015] for extracting action
names and arguments, respectively. As i → ∞, Qi → Q∗.
In this way, we can define F1

Φ = Q∗(s, o; θ1) and F2
Φ =

Q∗(ŝ, o; θ2) in Equations (1) and (2), and then use F1
Φ and

F2
Φ to extract action names and arguments, respectively.
Since Convolutional Neural Networks (CNNs) are effec-

tive in natural language processing [Kim, 2014; Zhang and
Wallace, 2015; Wang et al., 2017], we build CNN models to
learn Q(s, o, θ1) and Q(ŝ, o, θ2). We adopt the CNN Archi-
tecture of [Zhang and Wallace, 2015]. To build the kernels of
our CNN models, we test from uni-gram context to ten-gram
context and observe that five-word context works well in our
task. We thus design four types of kernels, which correspond
to bigram, trigram, four-gram and five-gram, respectively.

4.3 Computing Rewards
In this subsection we compute the reward r based on state s
and operation o. Specifically, r is composed of two parts, i.e.,
basic reward and additional reward. For the basic reward
at time step τ , denoted by rb,τ , if a word is not an item (we
use item to represent action name or action argument when it

is not confused), rb,τ is+50when the operation is correct and
−50 otherwise. If a word is an essential item, rb,τ = +100
when the operation is correct and rb,τ = −100 when it is
incorrect. If the word is an optional item, rb,τ = +100 when
the operation is correct and rb,τ = 0 when it is incorrect. If a
word is an exclusive item, rb,τ = +150 when the operation is
correct and rb,τ = −150 when it is incorrect. We denote that
an operation is correct when it selects essential items, selects
optional items, selects only one item of exclusive items or
eliminates words that are not items.
Note that action names are key verbs of a text and action ar-

guments are some nominal words, so the percentage of these
words in a text is closely related to action sequence extraction
process. We thus calculate the percentage, namely an item
rate, denoted by δ = #Item

#Word , where #Item indicates the
amount of action names or action arguments in all the anno-
tated texts and #Word indicates the total number of words
of these texts. We define a real-time item rate as δτ to de-
note the percentage of words that have been selected as action
names or action arguments in a text after τ training steps, and
δ0 = 0. On one hand, when δτ−1 ≤ δ, a positive additional
reward is added to rb,τ if rb,τ ≥ 0 (i.e., the operation is cor-
rect), otherwise a negative additional reward is added to rb,τ .
On the other hand, when δτ > δ, which means that words
selected as action names or action arguments are out of the
expected number and it is more likely to be incorrect if sub-
sequent words are selected, then a negative additional reward
should be added to the basic reward. In this way, the reward
rτ at time step τ can be obtained by Equation (5),

rτ =

{
rb,τ + sgn rb,τ · cδτ−1 δτ−1 ≤ δ,
rb,τ − cδτ−1 δτ−1 > δ.

(5)

where c is a positive constant and 0 ≤ δτ−1 < 1.

4.4 Training Our Model
To learn the parameters θ1 and θ2 of our two DQNs, we
store transitions ⟨s, o, r, s′⟩ and ⟨ŝ, o, r, ŝ′⟩ in replay memo-
ries Ω and Ω̂, respectively, and exploit a mini-batch sampling
strategy. As indicated in [Narasimhan et al., 2015], transi-
tions that provide positive rewards can be used more often to
learn optimal Q-values faster. We thus develop a positive-rate
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based experience replay instead of randomly sampling tran-
sitions from Ω (or Ω̂), where positive-rate indicates the per-
centage of transitions with positive rewards. To do this, we
set a positive rate ρ(0 < ρ < 1) and require the proportion of
positive samples in each mini-batch be ρ.
We present the learning procedure of EASDRL in Algo-

rithm 1, for building F1
Φ. We can simply replace s1, Ω and

θ1 with ŝ1, Ω̂ and θ2 for building F2
Φ. In Step 4 of Algo-

rithm 1, we generate the initial state s1 (ŝ1 for learning F2
Φ)

for each training data Φ = {⟨X,Y ⟩} by setting all operations
oi in s1 to be NULL. We perform N steps to execute one
of the operations {Select, Eliminate} in Steps 6, 7 and 8.
From Steps 10 and 11, we do a positive-rate based experi-
ence replay according to positive rate ρ. From Steps 12 and
13, we update parameters θ1 using gradient descent on the
loss L(θ1) = (yj −Q(sj , oj ; θ1))2 as shown in Step 13.
With Algorithm 1, we are able to build Q(s, o; θ1) and ex-

ecute operations {Select, Eliminate} to a new text by it-
eratively maximizing Q(s, o; θ1). Once we obtain operation
sequences, we can generate action names and use them to
build Q(ŝ, o; θ2) with Ω̂ and the same framework of Algo-
rithm 1. We then exploit the builtQ(ŝ, o; θ2) to extract action
arguments. As a result, we can extract action sequences from
texts using both of the built Q(s, o; θ1) and Q(ŝ, o; θ2).

Algorithm 1 Our EASDRL algorithm
Input: a training set Φ, positive rate ρ, item rate δ
Output: the parameters θ1
1: Initialize Ω = ∅, CNN with random values for θ1
2: for epoch = 1: H do
3: for each training data ⟨X,Y ⟩ ∈ Φ do
4: Generate the initial state s1 based on X
5: for τ = 1: N do
6: Perform an operation oτ with probability ϵ
7: Otherwise select oτ = max

o
Q(sτ , o; θ1)

8: Perform oτ on sτ to generate sτ+1

9: Calculate rτ based on sτ+1, oτ , Y and δ
10: Store transition (sτ , oτ , rτ , sτ+1) in Ω
11: Sample (sj , oj , rj , sj+1) from Ω based on ρ

12: Set yj =

{
rj for terminal sj+1

rj + γmax
o′

Q(sj+1, o′; θ1) otherwise

13: Update θ1 based on loss function L(θ1)
14: end for
15: end for
16: end for
17: return The parameters θ1

5 Experiments

5.1 Datasets and Evaluation Metric

We conducted experiments on three datasets, i.e., “Microsoft
Windows Help and Support” (WHS) documents [Branavan et
al., 2009], and two datasets collected from “WikiHow Home

WHS CT WHG
Labeled texts 154 116 150
Input-output pairs 1.5K 134K 34M
Action name rate (%) 19.47 10.37 7.61
Action argument rate (%) 15.45 7.44 6.30
Unlabeled texts 0 0 80

Table 1: Datasets used in our experiments

and Garden”3 (WHG) and “CookingTutorial”4 (CT). Details
are presented in Table 1. Supervised learning models require
that training data are one-to-one pairs (i.e. each word has
a unique label), so we generate input-texts-to-output-labels
based on annotation Y (as defined in Section 3). In our task,
a single text with n optional items or n exclusive pairs can
generate more than 2n potential label sequences (i.e. each
item of them can be extracted or not be extracted). Espe-
cially, we observe that n is larger than 30 in some texts of
our datasets, which means more than 1 billion sequences will
be generated. We thus restrict n ≤ 8 (no more than 28 label
sequences) to generate reasonable number of sequences.
For evaluation, we first feed test texts to each model to

output sequences of labels or operations. We then extract
action sequences based on these labels or operations. Af-
ter that, we compare these action sequences to their cor-
responding annotations and calculate #TotalTruth (total
ground truth items), #TotalTagged (total extracted items),
#TotalRight (total correctly extracted items). Finally we
compute metrics: precision = #TotalRight

#TotalTagged , recall =
#TotalRight
#TotalTruth , and F1 = 2×precision×recall

precision+recall . We randomly
split each dataset into 10 folds, calculated an average of per-
formance over 10 runs via 10-fold cross validation, and used
the F1 metric to validate the performance in our experiments.

5.2 Experimental Results
We compare EASDRL to four baselines, as shown below:
• STFC: Stanford CoreNLP, an off-the-shelf tool, denoted
by STFC, extracts action sequences by viewing root
verbs as action names and objects as action arguments
[Lindsay et al., 2017].

• BLCC: Bi-directional LSTM-CNNs-CRF model [Ma
and Hovy, 2016; Reimers and Gurevych, 2017] is a
state-of-the-art sequence labeling approach. We fine-
tuned parameters of the approach, including character
embedding, embedding size, dropout rate, etc., and de-
noted the resulting approach by BLCC.

• EAD: The Encoder-Aligner-Decoder approach maps in-
structions to action sequences proposed by [Mei et al.,
2016], denoted by EAD.

• CMLP:We consider a CombinedMulti-layer Perceptron
(CMLP), which consists of N MLP classifiers. N =
500 for action names extraction and N = 100 for action
arguments extraction. Each MLP classifier focuses on
not only a single word but also the k-gram context.

3https://www.wikihow.com/Category:Home-and-Garden
4http://cookingtutorials.com/
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Action Names Action Arguments
Method WHS CT WHG WHS CT WHG
EAD-2 86.25 64.74 53.49 57.71 51.77 37.70
EAD-8 85.32 61.66 48.67 57.71 51.77 37.70
CMLP-2 83.15 83.00 67.36 47.29 34.14 32.54
CMLP-8 80.14 73.10 53.50 47.29 34.14 32.54
BLCC-2 90.16 80.50 69.46 93.30 76.33 70.32
BLCC-8 89.95 72.87 59.63 93.30 76.33 70.32
STFC 62.66 67.39 62.75 38.79 43.31 42.75

EASDRL 93.46 84.18 75.40 95.07 74.80 75.02

Table 2: F1 scores of all types of action names and arguments

When comparing with baselines, we adopt the settings used
by [Zhang and Wallace, 2015] to build our CNN networks.
We set the input dimension to be (500×100) for action names
and (100× 150) for action arguments, the number of feature-
maps to be 32. We used 0.25 dropout on the concatenated
max pooling outputs and exploited a 256 dimensional fully-
connected layer before the final two dimensional outputs. We
set the replay memory Ω = 100000, discount factor γ = 0.9.
We varied ρ from 0.05 to 0.95 with the interval of 0.05 and
found the best value is 0.80 (that is why we set ρ = 0.80 in the
experiment). We set δ = 0.10 for action names, δ = 0.07 for
arguments according to Table 1, the constant c = 50, learning
rate of adam to be 0.001, probability ϵ for ϵ-greedy decreasing
from 1 to 0.1 over 1000 training steps.

Comparison with Baselines
We set the restriction n = 2 and n = 8 for EAD, CMLP
and BLCC which need one-to-one sequence pairs, and no re-
striction for STFC and EASDRL. In all of our datasets, the
arguments of an action are either all essential arguments or
one exclusive argument pair together with all other essential
arguments, which means at most 21 sequences can be gener-
ated. Therefore, the results of action arguments extraction are
identical when n = 2 and n = 8. The experimental results are
shown in Table 2. From Table 2, we can see that EASDRL per-
forms the best on extracting both action names and action ar-
guments in most datasets, except for CT dataset. We observe
that the number of arguments in most texts of the CT dataset
is very small, such that BLCC performs well on extracting
arguments in the CT dataset. On the other hand, we can also
observe that BLCC, EAD and CMLP get worse performance
when relaxing the restriction on n (n = 2 and n = 8). The
reason is that when given a single text with many possible
output sequences, these models learn common parts (essen-
tial items) of outputs, neglecting the different parts (optional
or exclusive items). We can also see that both sequence label-
ing method and encoder-decoder structure do not work well,
which exhibits that, in this task, our reinforcement learning
framework can indeed outperform traditional methods.
In order to test and verify whether or not our EASDRL

method can deal with complex action types well, we com-
pare with baselines in extracting exclusive action names and
exclusive action arguments. Results are shown in Table 3. In
this part, our EASDRL model outperforms all baselines and
leads more than 5% absolutely, which demonstrates the ef-
fectiveness of our EASDRL model in this task.
We would like to evaluate the impact of additional re-

Action Names Action Arguments
Method WHS CT WHG WHS CT WHG
EAD-2 26.60 21.76 22.75 40.78 47.91 39.81
EAD-8 22.12 17.01 23.12 40.78 47.91 39.81
CMLP-2 31.54 54.75 51.29 35.52 25.07 29.78
CMLP-8 26.90 51.80 41.03 35.52 25.07 29.78
BLCC-2 16.35 38.27 54.34 12.50 13.45 18.57
BLCC-8 19.55 35.01 41.27 12.50 13.45 18.57
STFC 46.40 50.28 44.32 50.00 46.40 50.32

EASDRL 56.19 66.37 68.29 66.67 54.24 55.67

Table 3: F1 scores of exclusive action names and arguments
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Figure 4: Results of EASDRL ablation studies

ward and positive-rate based experience replay. We test our
EASDRL model by removing positive-rate based experience
replay (denoted by “-PR”) or additional reward (denoted by
“-AR”). Results are shown in Figure 4. We observe that re-
moving either positive-rate based experience replay or addi-
tional reward degrades the performance of our model.

Online Training Results
To further test the robustness and self-learning ability of our
approach, we design a human-agent interaction environment
to collect the feedback from humans. The environment takes
a text as input and present the results of EASDRL to humans.
Humans adjust the output results, and the environment up-
dates the deep Q-networks of EASDRL based on humans’
adjustment. Before online training, we pre-train an initial
model of EASDRL by combining all labeled texts of WHS,
CT and WHG, with 30 labeled texts of WHG for testing.
The accuracy of this initial model is low since it is domain-
independent. We then use the unlabeled texts in WHG (i.e.,
80 texts as indicated in the last row in Table 1) for online
training. We “invited” humans to provide feedbacks for these
80 texts (with an average of 5 texts for each human). When a
human finishes the job assigned to him, we update our model
(as well as the baseline model). We compare EASDRL to
the best offline-trained baseline BLCC-2. Figure 5 shows the
results of online training, where “online collected texts” in-
dicates the number of texts on which humans provide feed-
backs. We can see that EASDRL outperforms BLCC-2 sig-
nificantly, which demonstrates the effectiveness of our rein-
forcement learning framework.

6 Conclusion
In this paper, we proposed a novel approach EASDRL to
automatically extract action sequences from texts based on
deep reinforcement learning. To the best of our knowledge,
EASDRL is the first approach that explores deep reinforce-
ment learning to extract action sequences from texts. We em-
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Figure 5: Online test results of WHG dataset

pirically demonstrated that our EASDRL model outperforms
state-of-the-art baselines on three datasets. We showed that
EASDRL could better handle complex action types and argu-
ments. We also exhibited the effectiveness of EASDRL in an
online learning environment. In the future, it would be inter-
esting to explore the feasibility of learning more structured
knowledge from texts such as state sequences or action mod-
els for supporting planning.
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