
Crowdsourced Action-Model Acquisition for Planning

Hankz Hankui Zhuo
School of Advanced Computing,

Sun Yat-sen University, Guangzhou, China. 510006
zhuohank@mail.sysu.edu.cn

Abstract
AI planning techniques often require a given set of ac-
tion models provided as input. Creating action mod-
els is, however, a difficult task that costs much man-
ual effort. The problem of action-model acquisition has
drawn a lot of interest from researchers in the past. De-
spite the success of the previous systems, they are all
based on the assumption that there are enough train-
ing examples for learning high-quality action models. In
many real-world applications, e.g., military operation,
collecting a large amount of training examples is of-
ten both difficult and costly. Instead of collecting train-
ing examples, we assume there are abundant annotators,
i.e., the crowd, available to provide information learn-
ing action models. Specifically, we first build a set of
soft constraints based on the labels (true or false) given
by the crowd or annotators. We then builds a set of soft
constraints based on the input plan traces. After that we
put all the constraints together and solve them using a
weighted MAX-SAT solver, and convert the solution of
the solver to action models. We finally exhibit that our
approach is effective in the experiment.

Introduction
AI planning techniques often require a given set of action
models as input. Creating action models, however, is a dif-
ficult task that costs much manual effort. The problem of
action-model acquisition has drawn a lot of interest from re-
searchers in the past. For instance, McCluskey et al. (Mc-
Cluskey, Liu, and Simpson 2003) designed a system to in-
teract with human experts to generate action models. Amir
(Amir 2005) introduced a tractable and exact technique for
learning action models known as Simultaneous Learning
and Filtering, where the state observations were needed for
learning. Yang et al. (Yang, Wu, and Jiang 2007) presented
a framework for discovering STRIPS (Fikes and Nilsson
1971) action models from a set of successfully observed
plans, just to name a few. Despite the success of previous
systems, they are all based on the assumption that there are
enough training examples for learning high-quality action
models. However, in many real-world applications, collect-
ing a large amount of examples for learning high-quality ac-
tion models is often both difficult and costly. For example,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in military operation, it is both difficult and expensive to col-
lect a large number of plan traces (i.e., training data), since
there are only a small amount of plan examples that can be
collected in the real domain (e.g., a plan example may cor-
respond to a war that does not happen frequently), and plan
examples themselves may take lots of resources, such as am-
munition. It is challenging when there is only a limited num-
ber of plan traces available (Zhuo and Yang 2014).

Inspired by crowdsourcing (Howe 2008), we are inter-
ested in considering integrating intelligence of crowds into
action-model acquisition for planning, assuming the crowd
are able to provide knowledge to help learn action mod-
els. There have been successful general-purpose platforms
such as Amazons Mechanical Turk1, task-specific sites for
call centers2 and programming jobs3 to do crowdsourc-
ing. Crowdsourcing has in fact been heavily used to solve
various tasks, such as audio transcription (Liem, Zhang,
and Chen 2011), hand-written recognition (Ouyang and Li
2012), story generation (Li et al. 2013), labeling training
data for machine learning (Raykar et al. 2010), and crowd-
sourcing itinerary planning (Zhang et al. 2012). Rare work,
however, is proposed to explore crowdsourcing to help learn
action models in planning community.

In this paper, we propose an algorithm called
CAMA (which stands for Crowdsourced Action-Model
Acquisition), to explore knowledge from crowds to learn
action models for planning. Specifically, CAMA functions
by two phases. CAMA first builds a set of soft constraints
based on the labels (true or false) given by the crowd
or annotators. CAMA then builds a set of soft constraints
based on the input plan traces. After that CAMA puts
all the constraints together and solves them using a
weighted MAX-SAT solver (Borchers and Furman 1998;
Davies and Bacchus 2011), and converts the solution of the
solver to action models.

Our approach explores knowledge from both crowdsourc-
ing and plan traces. This is superior to solely harness crowd-
sourcing since the crowd might give erroneous or outright
malicious responses, and these responses may be “filtered”
by plan traces.

1http://mturk.com
2http://liveops.com
3http://topcoder.com

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

3439

In the following, we first review previous work related to
our paper in the next section, and formulate the planning
problem. After that we present our CAMA algorithm in detail
and evaluate CAMA in three planning domains. In the end,
we conclude our paper and address future work.

Related Work
Our work is first related to action model learning. Ex-
cept the related work addressed in the introduction sec-
tion, Holmes and Isbell, Jr. modeled synthetic items based
on experience to construct action models (Holmes and Is-
bell, Jr. 2004). Cresswell et al. (Cresswell, McCluskey,
and West 2009) established a system called LOCM de-
signed to carry out automated induction of action models
from sets of example plans. Zhuo et al. (Zhuo et al. 2010;
Zhuo, Muñoz-Avila, and Yang 2014) proposed algorithms to
learn complex action models and hierarchical task network
domains from plan traces. Hoffmann et al. (Hoffmann, We-
ber, and Kraft 2010) proposed to derive domain models from
software engineering.

Crowdsourcing is first used to improve label quality of
training data in data mining community (Dawid and Skene
1979; Romney, Weller, and Batchelder 1986). For exam-
ple, Raykar et al. (Raykar et al. 2010) proposed a model
in which the parameters for worker accuracy depend on
the true answer. Whitehill et al. (Whitehill et al. 2009) ad-
dress the concern that worker labels should not be mod-
eled as independent of each other. Welinder et al. (Welinder
et al. 2010) design a multidimensional model for workers
that takes into account competence, expertise, and annotator
bias. Kamar et al. (Kamar, Hacker, and Horvitz 2012) ex-
tract features from the task at hand and use Bayesian Struc-
ture Learning to learn the worker response model. Kajino
et al. (Kajino, Tsuboi, and Kashima 2012) formulate the
repeated labeling problem as a convex optimization prob-
lem. Dai et al. (Dai et al. 2013) designed AI agents to ob-
tain cost-quality tradeoff based on Bayesian learning and
inference. Talamadupula et al. (Talamadupula et al. 2013;
Manikonda et al. 2014) presented a general framework that
foregrounds the potential roles of automated planners in
crowd-planning. Cenamor et al. (Cenamor, de la Rosa, and
Borrajo 2013) proposed an initial idea of attaining infor-
mation from traveling social network to build tourist plans.
Though there has been a large amount of work proposed to
explore crowdsourcing in different areas, there is rare work
conducted on learning action models for planning.

Problem Formulation
We consider the STRIPS model in this paper to illustrate our
idea, leaving more elaborate PDDL models to future work.
A planning domain is defined in this work as Σ = (S,A,Γ),
where S is the set of states, A is the set of action models, Γ
is the deterministic transition function S×A → S. Each ac-
tion model in A is composed of three parts: an action name
with zero or more arguments, a set of preconditions which
should be satisfied before the action is executed, and a set
of effects which are the results of executing the action. A
planning problem can be defined as P = (Σ, s0, g), where

s0 is an initial state, and g is a goal state. A solution to
a planning problem is an action sequence (a0, a1, . . . , an)
called a plan, which makes a projection from s0 to g. Each
ai is an action schema composed of an action name and
zero or more arguments, e.g., (board-truck ?d - driver ?t -
truck ?loc - location). Furthermore, a plan trace is defined as
t = (s0, a0, s1, a1, . . . , sn, an, g), where s1, ..., sn are par-
tially observed intermediate states. A state is called “partial”
because some propositions in the state are missing. “partial”
suggests “empty”, when all propositions are missing.

We define our learning problem as: given a set of action
schemas, a set of predicates, a small set of plan traces T ,
how do we construct a set of action models? An example in-
put of our learning problem in the blocks domain4 is shown
in Table 1. The output of our problem is a set of action mod-
els as shown below.

(pickup ?x - block)
(:precondition (ontable ?x) (clear ?x) (handempty))
(:effect (handempty) (not (clear ?x)) (not (ontable ?x))

(holding ?x) (not (handempty)))

The gray parts of the output action models are missing
preconditions or effects of the learnt action models, e.g.,
(ontable ?x) is a precondition that should be learnt but is
missing in the actual learnt model of pickup. The underlined
parts are preconditions or effects that should not be learnt.

Table 1: Example input of our learning problem in blocks,
where s10={(ontable C) (on B C) (on A B) (clear A) (han-
dempty)}, g1={(on B A) (on C B)}, s20={(ontable E) (on D
E) (ontable F) (clear D) (clear F) (handempty)}, g2={(on F
E) (on D F)}.

Action schemas:
(pickup ?x - block) (putdown ?x - block)
(unstack ?x ?y - block) (stack ?x ?y - block)
Predicates:
(ontable ?x - block) (on ?x ?y - block)
(clear ?x - block) (holding ?x) (handempty)
Plan traces:
#1: s10 (unstack A B) (putdown A) (unstack B C)

(stack B A) (pickup C) (stack C B) g1

#2: s20 (unstack D E) (putdown D) (pickup F)
(stack F E) (pickup D) (stack D F) g2

. . .

Our CAMA Framework
In this section, we present our algorithm CAMA to learn ac-
tion models. We show an overview of CAMA in Algorithm 1.
We will give the detailed description of each step of Algo-
rithm 1 in the following subsections.

Build Constraints Based on Crowdsourcing
We first build a set of constraints to capture the knowledge
from the crowd (i.e., Step 1 of Algorithm 1). To do this, we

4http://www.cs.toronto.edu/aips2000/aips-2000datafiles.tgz

3440

Algorithm 1 high-level CAMA algorithm
input: (1) an action schema set A, a predicate set P , a set of
plan traces T
output: A set of action models A

1: build constraints based on crowdsourcing
2: build constraints based on plan traces T
3: solve all the constraints
4: convert the solving result to A
5: return A

enumerate all possible preconditions and effects for each ac-
tion. Specifically, we generate actions’ preconditions and ef-
fects as follows. If the parameters of predicate p, denoted by
Para(p), are included by the parameters of action a, denoted
by Para(a), i.e., Para(p) ⊆ Para(a), p is likely a precondi-
tion, or an adding effect, or a deleting effect of a. We there-
fore generate three new proposition variables “p ∈ Pre(a)”,
“p ∈ Add(a)” and “p ∈ Del(a)”, the set of which is de-
noted by Hpre = {p ∈ Pre(a)|∀p ∈ P and ∀a ∈ A},
Hadd = {p ∈ Add(a)|∀p ∈ P and ∀a ∈ A}, Hdel = {p ∈
Del(a)|∀p ∈ P and ∀a ∈ A}, respectively. We put all the
proposition variables together, i.e.,H = Hpre∪Hadd∪Hdel,
and estimate the label (true or false) of each variable by
querying the crowd or annotators.

For each proposition inH , we build a Human Intelligence
Task (HIT) in the form of a short survey. For example, for
the proposition “(ontable ?x) ∈ Pre(pickup)”, we generate
a survey as shown below:
Is the fact that “x is on table” a precondition of picking up

the block x?
There are three possible responses, i.e., “Yes, No, Cannot
tell”, out of which an annotator has to choose exactly one.
Each annotator is allowed to annotate a given survey once.
Note that the set of proposition variablesH will not be large,
since all predicates and actions are in the “variable” form
rather than instantiated form, and we only consider predi-
cates whose parameters are included by actions. For exam-
ple, for the blocks domain shown in Table 1, there are only
78 proposition variables in H .

Assume there are R annotators and N tasks (N = |H|)
with binary labels {1, 0}. Denote by Z = {zi ∈ {1, 0}, i ∈
[N]} the true label of task i, where [N] represents the set of
first N integers. LetNj is the set of tasks labeled by annota-
tor j, andRi is the set of annotators labeling task i. The task
assignment scheme can be represented by a bipartite graph
where an edge (i, j) denotes that the task i is labeled by the
worker j. The labeling results form a matrix y ∈ {1, 0}N×R.
The goal is to find an optimal estimator Ẑ of the true labels
Z given the observation Y , minimizing the average bit-wise
error rate 1

N

∑
i∈[N] prob[ẑi 6= zi].

We model the accuracy of annotators separately on the
positive and the negative examples (Raykar et al. 2010;
Raykar and Yu 2011). If the true label is one, the true posi-
tive rate TP j for the jth annotator is defined as the proba-
bility that the annotator labels it as one, i.e.,

TP j = p(yji = 1|zi = 1).

On the other hand if the true label is zero, the true negative
rate TN j is defined as the probability that annotator labels
it as zero, i.e.,

TN j = p(yji = 0|zi = 0).

Considering the family of linear discriminating functions,
the probability for the positive class is modeled as a logistic
sigmoid, i.e.,

p(y = 1|x,w) = σ(wTx),

where σ(z) = 1
(1+e−z) .

Let xi be a value assigned to variable Xi ∈ X and yji
be the label (1 or 0) given by the jth annotator. We have
the training data D = {xi, y1i , . . . , yRi }Ni=1 with N instances
from R annotators.

The task is to estimate the parameter w as well as the true
positive P = 〈TP 1, . . . , TPR〉 and the true negative N =
〈TN1, . . . , TNR〉. Let θ = {w,P,N}, the probability of
training data D can be defined by

p(D|θ) =
N∏
i=1

p(y1i , . . . , y
R
i |xi, θ).

Given the true label yi, we assume y1i , . . . , y
R
i are indepen-

dent. We thus have

p(D|θ) =
N∏
i=1

[aipi + bi(1− pi)],

where pi = σ(wTxi), ai =
∏R
j=1[TP j]y

j
i [1 − TP j]1−y

j
i ,

and bi =
∏R
j=1[TN j]1−y

j
i [1− TN j]y

j
i .

The EM algorithm can be exploited to estimate the param-
eter θ by maximizing the log-likelihood of p(D|θ) (Raykar
et al. 2010), i.e.,

θ̂ = arg max
θ
{ln p(D|θ)},

where θ̂ = {P̂, N̂ , ŵ}. With θ̂ we can estimate the final label
of xi according the probability p(yi = 1|y1i , . . . , yRi , xi, θ̂).
We use the unknown hidden true label zi as the missing data,
and denote Z = [z1, . . . , zN]. We have

ln p(D,Z|θ) =
N∑
i=1

zi ln piai + (1− zi) ln(1− pi)bi.

As a result, the expectation can be state as

E{ln p(D,Z|θ)} =
N∑
i=1

µi ln piai + (1− µi) ln(1− pi)bi,

where µi = p(zi = 1|y1i , . . . , yRi , xi, θ). In this paper, how-
ever, we would like to trust a particular expert more than the
others. One way to achieve this is to impose priors on P and
N . We choose to use the beta distribution as the priors of
P andN , i.e., B(TP j |a1, a2) and B(TN j |b1, b2). Note that
we specify the priors in terms of the mean µ and variance σ2.
The mean and the variance for a beta prior are given by µ =

3441

a1/(a1 +a2) and σ2 = a1a2/((a1 +a2)2(a1 +a2 +1)), re-
sulting in a1 = (−µ3+µ2−µσ2)/σ2 and a2 = a1(1−µ)/µ,
likewise for b1 and b2.

In addition, since we do not have features xi and we
wish to obtain an estimate of the actual ground truth based
only on the labels from multiple annotators. We thus esti-
mate p = prob[z = 1] indicating the prevalence of the
positive class. We assume a beta prior for the prevalence,
i.e., B(p|c1, c2). The EM algorithm is simplified as follows
(Raykar et al. 2010).

1. Let µi = 1
N

∑R
j=1 y

j
i based on majority voting.

2. Given µi, the true positive and true negative can be esti-
mated by:

TP j =
aj1 − 1 +

∑N
i=1 µiy

j
i

aj1 + aj2 − 2 +
∑N
i=1 µi

,

and

TN j =
bj1 − 1 +

∑N
i=1(1− µi)(1− yji)

bj1 + bj2 − 2 +
∑N
i=1(1− µi)

,

the prevalence of the positive class is estimated by:

p =
c1 − 1 +

∑N
i=1 µi

c2 + c2 − 2 +N
.

3. Update µi by

µi =
aip

aip+ bi(1− p)
,

where ai =
∏R
j=1[TP j]y

j
i [1 − TP j]1−y

j
i and bi =∏R

j=1[TN j]1−y
j
i [1− TN j]y

j
i .

Steps 2 and 3 are iterated until convergence is reached. Once
the EM algorithm stops, we can use µi to estimate the true
labels zi by setting a threshold. We simply set the threshold
as 0.5, i.e., if µi > 0.5, the value of ẑi is assigned with
1, otherwise 0. We view µi as the weight of the constraint
that “zi is true”. As a result, we can build a set of weighted
constraints with respect to each task in H .

Build Constraints Based on Plan Traces
Since annotators might give erroneous or outright mali-
cious responses, we explore additional information from
plan traces to reduce the negative effect from erroneous an-
notators. We explore this information in the form of con-
straints. Specifically, we build three types of constraints, i.e.,
state constraints, action constraints and plan constraints,
to capture the knowledge helpful for acquiring action mod-
els. These three types of constraints were also explored by
(Yang, Wu, and Jiang 2007).

State constraints By observation, we find that if a predi-
cate p frequently appears just before an action a is executed,
then p is probably a precondition of a. We formulate this
idea as the constraint

PARA(p) ⊆ PARA(a)⇒ p ∈ PRE(a),

where PARA(p) (PARA(a)) means a set of parameters of
p (a), the condition of PARA(p) ⊆ PARA(a) is required
by the STRIPS description, that the action should contain
all the parameters of its preconditions or effects. Likewise,
if a predicate p frequently appears just after an action a is
executed, then p is probably an effect of a. We also formulate
this idea as the constraint

PARA(p) ⊆ PARA(a)⇒ p ∈ ADD(a).

We calculate the weights of this kind of constraints with
occurrences of them in the plan traces. In other words, if a
predicate p has occurred just before a is executed for three
times in the plan traces, and p’s parameters are included by
a’s parameters, then the weight of the constraint that p ∈
PRE(a) is 3.

Action constraints We would like to ensure that the action
models learned are consistent, i.e., an action a should not
generate two conflict conditions such as p and¬p at the same
time. Such an idea can be formulated by the constraint,

p ∈ ADD(a)⇒ p 6∈ DEL(a).

Since we would like to require that this kind of constraints
to be satisfied maximally, we assign the weights of this kind
of constraints with the largest value of the weights of state
constraints.

Plan constraints Each plan trace in the target domain pro-
vides us the information that it can be executed successfully
from the first action to the last one. In other words, actions
in a plan trace are all executable, i.e., their preconditions are
all satisfied before they are executed. This information can
be represented by the following constraint,

p ∈ PRE(ai)⇒ p ∈ EXE(i− 1)

where p ∈ EXE(i − 1) means p either exists in the initial
state and is not deleted by the action sequence, or is added
by some action a′ prior to ai and is not deleted by actions
between a′ and ai. EXE(i − 1) suggests the state reached
after executing action sequence 〈a1, . . . , ai−1〉.

Furthermore, consider an observed state oi, which is com-
posed of a set of predicates. We require that each predicate
in oi should either be newly added by actions or exist in the
initial state. Likewise, we formulate the idea with the con-
straint:

p ∈ oi ⇒ p ∈ EXE(i− 1).

We also require that this kind of constraints to be maxi-
mally satisfied, and assign the largest value of the weights of
state constraints as the weights of this kind of constraints.

Solving All Constraints
In Step 4, we solve all the weighted constraints built by Steps
2 and 3 using a weighted MAX-SAT solver (Borchers and
Furman 1998; Davies and Bacchus 2011). Before feeding
the weighted constraints to the weighted MAX-SAT solver,
we adjust the weights of crowdsourcing constraints by re-
placing the original weights (denoted as wo (0 ≤ wo ≤
1), which is calculated by the similarity function), with
γ

1−γ × wm × wo, where wm, as the scale factor for wo, is

3442

the maximal value of weights of state constraints, and γ is
a parameter to vary the importance of crowdsourcing con-
straints. By varying γ from 0 to 1, we can adjust the weights
of crowdsourcing constraints from 0 to ∞. We will show
the experiment result of varying γ in the next section. After
adjusting the weights, we can solve all the weighted con-
straints using the weighted MAX-SAT solver. The solving
result is an assignment of all the atoms, e.g., the atom of
p ∈ PRE(a) is assigned as true. After that, we will directly
convert the solving result to action models At in Step 4 of
Algorithm 1. For instance, if p ∈ PRE(a) is true, then p will
be converted to a precondition of a.

Experiments
We test our learning algorithm CAMA in three domains
blocks4, driverlog5 and laundry. laundry is a domain cre-
ated based on the description in the MIT PLIA1 dataset6.
We collect 75 plan traces as training data in each domain.
To collect labels of variables, we design the crowdsourcing
process by the following two ways. The first way, i.e., the
simulated way, is to build 100 virtual annotators to simulate
the crowd, and randomly generate labels with the parameter
θ. Each virtual annotator is controlled by θ when labeling
variables. The other way, i.e., the manual way, to invite 30
people (including 20 students and 10 computer engineers)
to provide labels for variables. As mentioned in the section
of Step 1 of Algorithm 1, we change propositions to short
surveys in natural language, which means annotators can an-
swer questions solely based on their background knowledge,
with no need to additionally learn AI planning background.

We evaluate our CAMA algorithm by comparing its learned
action models with the artificial action models which are
viewed as the ground truth. We define the error rate of the
learning result by calculating the missing and extra pred-
icates of the learned action models. Specifically, for each
learned action model a, if a precondition of a does not exist
in the ground-truth action model, then the number of errors
increases by one; if a precondition of the ground-truth action
model does not exist in a’s precondition list, then the num-
ber of errors also increases by one. As a result, we have the
total number of errors of preconditions with respect to a. We
define the error rate of preconditions (denoted asErrpre(a))
as the proportion of the total number of errors among all the
possible preconditions of a, that is,

Errpre(a) =
the total number of errors of preconditions

all the possible precondition of a
.

Likewise, we can calculate the error rates of adding effects
and deleting effects of a, and denote them as Erradd(a)
and Errdel(a) respectively. Furthermore, we define the er-
ror rate of all the action models A (denoted as Err(A)) as
the average of Errpre(a), Erradd(a) and Errdel(a) for all
the actions a in A, that is,

Err(A) =

∑
a∈A(Errpre(a) + Erradd(a) + Errdel(a))

3|A|
,

and define the accuracy as Acc = 1− Err(A).
5http://planning.cis.strath.ac.uk/competition/
6http://architecture.mit.edu/house n/data/PlaceLab/PLIA1.htm

Comparison CAMA and ARMS
We first evaluated CAMA in the simulated crowdsourcing
data, i.e., the labels were collected in the simulated way.
We repeated our CAMA five times to calculate an average
of accuracies. Each time we randomly selected one of each
five sequential intermediate partial states being observed in
plan traces leaving other states empty, and each partial state
was selected by 50% of propositions in the corresponding
full state (a state was assumed to be represented by a set of
propositions). We compared our CAMA algorithm to the pre-
vious learning system ARMS (Yang, Wu, and Jiang 2007),
where ARMS learnt action models without any information
from the crowd. We show the experimental results in Fig-
ure 1. The parameter γ, which is introduced in the previous
section, is set as 0.5 when running our algorithm CAMA.

From Figure 1, we can see that the accuracy of our algo-
rithm CAMA is higher than ARMS, which indicates that ex-
ploiting the knowledge from the crowd can indeed perform
better than learning without this knowledge, as ARMS does.
We can also observe that when the number of plan traces
is small, the difference between our algorithm CAMA and
ARMS is larger. However, when the number of plan traces
becomes large, the gap shrinks. This phenomenon indicates
that our algorithm CAMA provides better effect on learning
the action models when we do not have enough plan traces,
since when the number of plan traces becomes larger, there
will be more knowledge available from the plan traces them-
selves, which can be enough to learn the action models. The
result also reveals that even when the number of plan traces
is very small (e.g., 30), the learning accuracy of our algo-
rithm CAMA will be no less than 80%, which means that ex-
ploiting the knowledge the crowd can really help learning
action models.

Likewise, we compared our CAMA algorithm to ARMS in
the manual crowdsourcing data. The results are shown in
Figure 2. From the results, we can observe that CAMA per-
forms much better than ARMS in the manual crowdsourc-
ing data. We can also see that the difference between CAMA
and ARMS becomes smaller as the number of plan traces be-
comes larger. The reason is the same as the one provided
in the previous paragraph, i.e., the knowledge becomes rich
enough for both systems to learn high-quality action models
when the number becomes large, and weakens the impact of
knowledge from crowdsourcing on the other hand.

Varying the γ Parameter
We varied the value of the parameter γ from 0 to 1 to see the
trend of the accuracy, by fixing the number of plan traces
to 60. We show the results in Figure 3. From Figure 3, we
can see that when γ increases from 0 to 0.5, the accuracy
increases, which exhibits that when the effect of the knowl-
edge from crowdsourcing enlarges, the learning accuracy
gets higher. However, when γ is larger than 0.5 (note that
when γ = 0.5, γ

1−γ will be equal to 1, which means the
weights of crowdsourcing constraints remain unchanged),
the accuracy becomes lower when γ increases. This is be-
cause the impact of the knowledge from the plan traces is
relatively reduced when γ becomes very large, and implies

3443

Figure 1: The comparison between CAMA and ARMS in the simulated crowdsourcing data.

Figure 2: Comparison between CAMA and ARMS in the manual crowdsourcing data.

Figure 3: The accuracy with respect to different γ

that the knowledge from the plan traces is also important
for learning high-quality action models. In summary, with
the knowledge of the current limited plan traces, exploit-
ing knowledge from crowdsourcing does help improve the
learning accuracy.

Conclusion
We propose a novel crowdsourced action-models acquisi-
tion algorithm CAMA to learn action models by employing
the knowledge from crowdsourcing. We first build a a set
of constraints to capture the information provided by the
annotators. We then build constraints from plan traces and
solve all the constraints using a weighted MAX-SAT solver.
From our experiments, we can see that our CAMA algorithm
can learn more accurate action models with the help of the
crowd.

In this work, we consider the quality of information ac-
quired from annotators, rather than the cost of completing
Human Intelligence Tasks. In the future, we would like to
study the feasibility of considering the crowdsourcing cost
in our CAMA framework.

Acknowledgement
Hankz Hankui Zhuo’s research is supported by the Na-
tional Natural Science Foundation of China (No. 61309011),
Fundamental Research Funds for the Central Universities
(No. 14lgzd06), Research Fund for the Doctoral Program of
Higher Education of China (No. 20110171120054).

3444

References
Amir, E. 2005. Learning partially observable deterministic
action models. In Proceedings of IJCAI, 1433–1439.
Borchers, B., and Furman, J. 1998. A two-phase exact algo-
rithm for max-sat and weighted max-sat problems. Journal
of Combinatorial Optimization 2(4):299–306.
Cenamor, I.; de la Rosa, T.; and Borrajo, D. 2013. On-
droad planner: Building tourist plans using traveling social
network information. In HCOMP.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from plan-
ning examples. In Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09).
Dai, P.; Lin, C. H.; Mausam; and Weld, D. S. 2013. Pomdp-
based control of workflows for crowdsourcing. Artif. Intell.
202:52–85.
Davies, J., and Bacchus, F. 2011. Solving maxsat by solv-
ing a sequence of simpler sat instances. In 17th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP-2011), 225–239.
Dawid, A. P., and Skene, A. M. 1979. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28(1):20–28.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence Journal 189–208.
Hoffmann, J.; Weber, I.; and Kraft, F. M. 2010. SAP speaks
PDDL. In Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010.
Holmes, M. P., and Isbell, Jr., C. L. 2004. Schema learning:
Experience-based construction of predictive action models.
In In Advances in Neural Information Processing Systems
17 (NIPS-04).
Howe, J. 2008. Crowd sourcing: Why the power of the
crowd is driving the future of business.
Kajino, H.; Tsuboi, Y.; and Kashima, H. 2012. A convex
formulation for learning from crowds. In AAAI.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining hu-
man and machine intelligence in large-scale crowdsourcing.
In AAMAS, 467–474.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In AAAI.
Liem, B.; Zhang, H.; and Chen, Y. 2011. An iterative dual
pathway structure for speech-to-text transcription. In Hu-
man Computation.
Manikonda, L.; Chakraborti, T.; De, S.; Talamadupula, K.;
and Kambhampati, S. 2014. AI-MIX: using automated plan-
ning to steer human workers towards better crowdsourced
plans. In Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, July 27 -31, 2014, Québec
City, Québec, Canada., 3004–3009.

McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003. GIPO
II: HTN planning in a tool-supported knowledge engineer-
ing environment. In Proceedings of ICAPS, 92–101.
Ouyang, T., and Li, Y. 2012. Bootstrapping personal ges-
ture shortcuts with the wisdom of the crowd and handwriting
recognition. In CHI, 2895–2904.
Raykar, V. C., and Yu, S. 2011. Ranking annotators for
crowdsourced labeling tasks. In NIPS, 1809–1817.
Raykar, V. C.; Yu, S.; Zhao, L. H.; Valadez, G. H.; Florin,
C.; Bogoni, L.; and Moy, L. 2010. Learning from crowds.
Journal of Machine Learning Research 11:1297–1322.
Romney, A. K.; Weller, S. C.; and Batchelder, W. H. 1986.
Culture as consensus: A theory of culture and informant ac-
curac. American Anthropologist, New Series 88(2):313–338.
Talamadupula, K.; Kambhampati, S.; Hu, Y.; Nguyen, T. A.;
and Zhuo, H. H. 2013. Herding the crowd: Automated plan-
ning for crowdsourced planning. In HCOMP.
Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010.
The multidimensional wisdom of crowds. In NIPS, 2424–
2432.
Whitehill, J.; Ruvolo, P.; Wu, T.; Bergsma, J.; and Movellan,
J. R. 2009. Whose vote should count more: Optimal integra-
tion of labels from labelers of unknown expertise. In NIPS,
2035–2043.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence Journal 171:107–143.
Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D. C.; and
Horvitz, E. 2012. Human computation tasks with global
constraints. In CHI, 217–226.
Zhuo, H. H., and Yang, Q. 2014. Action-model acquisition
for planning via transfer learning. Artif. Intell. 212:80–103.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540–1569.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artif. Intell. 212:134–157.

3445

