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Abstract. AI planning requires action models to be given in advance. However,
it is both time consuming and tedious for a human to encode theaction models by
hand using a formal language such as PDDL, as a result, learning action models is
important for AI planning. On the other hand, the data being used to learn action
models are often limited in planning domains, which makes the learning task very
difficult. In this paper, we present a new algorithm to learn action models from
plan traces by transferring useful information from other domains whose action
models are already known. We present a method of building a metric to measure
the shared information and transfer this information according to this metric. The
larger the metric is, the bigger the information is transferred. In the experiment
result, we show that our proposed algorithm is effective.

1 Introduction

Planning systems require action models as input. A typical way to describe action mod-
els is to use action languages such as the planning domain description language (PDDL)
[6]. A traditional way of building action models is to ask domain experts to analyze a
planning domain and write a complete action model representation. However, it is very
difficult and time-consuming to build action models in complex real world scenarios in
such a way, even for experts. Thus, researchers have explored ways to reduce the human
efforts of building action models by learning from observedexamples or plan traces.

However, previous algorithms and experiments show that action model learning
is a difficult task and the performances of the state-of-the-art algorithms are not very
satisfying. A useful observation is that in many different planning domains, there exists
some useful information that may be “borrowed” from one domain to another, provided
that these different domains are similar in some aspects. Inparticular, we say that two
domains A and B are similar if there is a mapping between some predicates of the two
domains, in that the underlying principle of these actions,although their corresponding
predicates are similar, resemble inherent similarities, then such a mapping can enable
us to learn the action model in domain B by the mapping from thelearned action model
in domain A [9].

In this paper, we present a novel action model learning algorithm calledt-LAMP
(transferLearningActionModels other domains). We use the shared common informa-
tion fromsourcedomains to help to learn action models from atargetdomain (we call
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the domains whose information is transferredsourcedomains, while the domain from
which the action models need to be learned atargetdomain). We propose a method of
building a metric to measure the “similarity” between two domains, which is a difficult
and not being answered question in planning domains.t-LAMP functions in the follow-
ing three steps. Firstly, we encode the input plan traces into propositional formulas that
are recorded as aDB. Secondly, we encode action models as a set of formulas. Finally,
we learn weights of all formulas by transferring knowledge from source domains, and
generate action models according to the weights of formulas.

The rest of the paper is organized as follows. We first give thedefinition of our
problem and then describe the detailed steps of our algorithm. Then we will discuss
some related works. In the experiment section, we will evaluate our algorithm in five
planning domains of transfer learning action models and evaluate our transfer learning
framework. Finally, we conclude the paper and discuss future work.

2 Related Work

Recently, some researchers have proposed various methods to learn action models from
plan traces automatically. Jim, Jihie, Surya, Yolanda [3] and Benson [1] try to learn
action models from plan traces with intermediate observations. What they try to learn
are STRIPS-models [5, 6]. One limitation of their algorithmis all the intermediate states
need to be known. Yang, Wu and Jiang designed an algorithm called ARMS [2], which
can learn action models from plan traces with only partial intermediate observations,
even without observations.

Another related work is Markov Logic Networks (MLNs)[4]. MLN is a powerful
framework that combines probability and first-order logic.A MLN is a set of weighted
formulae to soften constraints in first-order logic. The main motivation behind MLN to
“soften” constraints is that when a world violates a formulain a knowledge base, it is
less probable, but not impossible.

In the transfer learning literature, Lilyana, Tuyen and Raymond[7] address the prob-
lem of how to leverage knowledge acquired in a source domain to improve the accuracy
and speed of learning in a related target domain. [9] proposes to learn action models by
transferring knowledge from another domain, which is the first try to transfer knowl-
edge across domains.

3 Problem Definition

We represent a planning problem asP = (Σ, s0, g), whereΣ = (S, A, γ) is the plan-
ning domain,s0 is the initial state, andg is the goal state. InΣ, S is the set of states,A is
the set of actions,γ is the deterministic transition function, which isS ×A → S. A so-
lution to a planning problem is called a plan, an action sequence(a0, a1, . . . , an) which
makes a projection froms0 to g. Eachai is anaction schemacomposed of a name and
zero or more parameters. Aplan traceis defined asT = (s0, a0, s1, a1, . . . , sn, an, g),
wheres1, ..., sn are partial intermediate state observations that are allowed to be empty.

We state our learning problem as: given as input (1) a set of plan tracesT in a
target domain(that is, the domain from which we wish to learn the action models),



Fig. 1.an example of our problem definition (input and output)

input:

output:

Depots, elevator, 
source 

domains:

predicates: 

(at ?y-portable ?x-location) (in ?x-portable) ...

action schemas:

(move ?m-location ?l-location)

plan trace 1: (is-at l1) (at o1 l1) (o2 l2), 

(put-in o1 l1) (move l1 l2) (put-in o2 l2) (move l2 

home), (is-at home) (at o1 home) (at o2 home)

plan trace 2: 

(move ?m-location ?l-location)

preconditions: (is-at ?m)

Effects: (and (is-at ?l) (not (is-at ?m)) (forall (?x-portable)

                 (when (in ?x) (and (at ?x ?l) (not (at ?x ?m)))))

… ...

Target 

domain:

briefcase

(2) the description of predicates and action schemas in the target domain, and (3) the
completely available action models insource domains, Our algorithmt-LAMP outputs
preconditions and effects of each action model. An example of the input and output are
shown in Fig.1.

4 The Transfer Learning Algorithm

Before giving our algorithmt-LAMP, we present an overview of the algorithm as shown
in Fig.2. In the following subsections, we give the detail description of the main steps

Fig. 2.an overview of thet-LAMP algorithm
=============================================================================

the t-LAMP algorithm:

input: source domain descriptions {D1, D2, ..., Dn}, plan traces from the target domain, 

          action schemas of the target domain Dt.

output: action model descriptions of the target domain.

----------------------------------------------------------------------------------------------------------------------------------

step 1. encode each plan trace as a formula in conjunctive form. 

step 2. for each source domain Di, do

step 3. encode all the action models of the domain Di as a list of formulae F(Di).

step 4. find the best mapping MAPi between Di and Dt, the resulting formulae F
*
(Dt) and their weights.

step 5. end

step 6. generate candidate formulae to describe all the possible action models. 

step 7. set the initial weights of all the candidate formulae as zero.

step 8. for each candidate formula fj and its corresponding weight wj do

step 9. for each MAPi, do

step 10. if fj is the same as fk of the resulting F
*
(Dt) of MAPi, then wj=wj+wk.

step 11. end

step 12. end

step 13. learn weights of all the candidate formulae which are initially weighted by step 7-12. 

step 14. select a subset of candidate formulae whose weights are larger than a threshold. 

step 15. convert the selected candidate formulae to action models, and return. 

=============================================================================

which are highlighted.



4.1 Encoding Each Plan Trace as a Proposition Database

As is defined in the problem definition, each plan trace can be briefly stated as an action
sequence with observed states, including initial state andgoal state. We need to encode
states and actions which are also called state transitions.We represent facts that hold
in states using propositional formulae, e.g. consider thebriefcasedomain in Fig.1. We
have an objecto1and a locationl1. We represent the state where the objecto1 is in the
briefcase and the briefcase is at locationl1 with the propositional formula:in(o1)∧ is-
at(l1), wherein(o1)andis-at(l1) can be viewed as propositional variables. A model of
the propositional formula is the one that assigns true valueto the propositional variables
in(o1) andis-at(l1). Every object in a state should be represented by the propositional
formula, e.g. if we have one more locationl2, the above propositional formula should
be modified as:in(o1)∧ is-at(l1)∧ ¬is-at(l2). The behavior of deterministic actions is
described by a transition functionγ. For instance, the actionmove(l1,l2)in Fig.1 is de-
scribed byγ(s1, move(l1, l2)) = s2. In s1, the briefcase is at locationl1, while in s2, it
is at l2. The statess1 ands2 can be represented by:is-at(l1)∧ ¬is-at(l2)and¬is-at(l1)
∧ is-at(l2). We need different propositional variables that hold in different states to spec-
ify that a fact holds in one state but does not hold in another state. We introduce a new
parameter in predicates, and represent the transition fromthe states1 to the states2 by
is-at(l1,s1) ∧ ¬is-at(l2,s1) ∧ ¬is-at(l1,s2) ∧ is-at(l2,s2). On the other hand, the fact
that the actionmove(l1, l2)causes the transition can be represented by a propositional
variablemove(l1, l2,s1). Thus, the functionγ(s1, move(l1, l2)) can be represented as
move(l1, l2, s1)∧is-at(l1, s1)∧¬is-at(l2, s1)∧¬is-at(l1, s2)∧is-at(l2, s2). As a result,
a plan trace can be encoded correspondingly.

Thus, plan traces can be encoded as a set of propositional formulae, each of which is
a conjunction of propositional variables. As a result, eachplan trace can be represented
by a set of propositional variables, whose elements are conjunctive. This set is recorded
in a database calledDB, i.e. each plan trace is corresponded to its ownDB.

4.2 Encoding Action Models as Formulae

We consider an action model is a strips model plus conditional effects, i.e. a precon-
dition of an action model is a positive atom, and an effect is either a positive/negative
atom or a conditional effect. According to the semantic of anaction model, we equally
encode an action model with a list of formulae, as addressed in the following.
T1: If an atomp is a positive effect of an actiona, thenp must hold aftera is executed.
The idea can be formulated by:∀i.a(i) → ¬p(i) ∧ p(i+1), wherei corresponds tosi.
T2: Similar to T1, the negation of an atomp is an effect of some actiona, which
meansp will never hold(be deleted) aftera is executed, which can be formulated by:
∀i.a(i) → ¬p(i+1) ∧ p(i).
T3: If an atomp is a precondition ofa, thenp should hold beforea is executed. That is
to say, the following formula should hold:∀i.a(i) → p(i).
T4: A positive conditional effect, in PDDL form, like “forall x̄ (whenf(x̄) q(x̄))”, is
a conditional effect of some actiona, which means for anȳx, if f(x̄) is satisfied, then
q(x̄) will hold after a is executed. Here,f(x̄) is a formula in the conjunctive form of
atoms. Thus a conditional effect can be encoded by:∀i.x̄.a(x̄, i)∧f(x̄, i) → q(x̄, i+1).



Fig. 3. the algorithm to learn weights and the corresponding scoreWPLL
=======================================================

the algorithm to learn weights w and the corresponding score WPLL:

input: a list of DBs, a list of formulae F
*
(Dt).

output: a list of weights w for the formulae F
*
(Dt), and WPLL.

---------------------------------------------------------------------------------------------

step 1.    initiate w
0

= (0, …, 0).

step 2. i = 0. 

step 3. repeat

step 4. calculate WPLL(w
i
) using DBs and F

*
(Dt).

step 5. w
i+1

= w
i
+ * WPLL(w

i
)/ w

i
, where  is a mall enough constant.

step 6. i = i+1;

step 7. until i is larger than a maximal iterative number.

step 8.    output w
i
 and WPLL(w

i
).

=======================================================

T5: Similarly, a negative conditional effect of the form like “forall x̄ (when f(x̄)
¬q(x̄))”, can be encoded by:∀i.x̄.a(x̄, i) ∧ f(x̄, i) → ¬q(x̄, i+1).
By T1-T5, we can encode an action model by requiring its corresponding formulas to be
always true. Furthermore, for each source domainDi, we can encode the action models
in Di with a list of formulaeF (Di).

4.3 Building the Best Mapping

In step 4, we find the best mapping between the source domain and the target domain, to
bridge these two domains. To map two domains, firstly, we needto map the predicates
between the source domainDi and the target domainDt; secondly, map the action
schemas betweenDi and Dt. The mapping process of these two steps is the same,
which is: for each predicatepi in Di and a predicatept in Dt, we build aunifier
by mapping their corresponding names and arguments (we require that the number of
arguments are the same inpi andpt, otherwise, we find nextpt to be mapped withpi);
and then substitute all the predicates inDt by this unifier; for eachpi andpt, we repeat
the process ofunifier-building andsubstitutionuntil the unifier-building process stops.

By applying a mapping to the list of formulaeF (Di), we can generate a new list
of formulaeF ∗(Dt), which encodes action models ofDt. We manage to calculate a
score function onF ∗(Dt) to measure the similarity betweenDi andDt. We exploit the
idea of [4, 8] to calculate the scoreWPLL (which will be defined soon) when learn-
ing weights of formulae. The calculate process is given in Fig.3 In the highlighted
step (step 4) of Fig.3,WPLL, the Weighted Pseudo-Log-Likelihood [4], is defined as
WPLL(w) =

∑n

l=1 log Pw(Xl = xl|MBx(Xl)) where,Pw(Xl = xl|MBx(Xl)) =
C(X

l
=x

l
)

C(X
l
=0)+C(X

l
=1)

andC(Xl=xl) = exp
∑

fi∈Fl
wifi(Xl = xl, MBx(Xl)). x is a pos-

sible world (a databaseDB). n is the number of all the possiblegroundingsof atoms
appearing in all the formulaeF ∗(Dt), andXl is thelth groundingsof the all.MBx(Xl)
is the state of the Markov blanket ofXl in x. The more detail description is presented
by [4].

Using the algorithm, we will attain one scoreWPLL for each mapping. We keep the
mapping (which is mentioned as the best mapping) with the highest scoreWPLL, the
resultingF ∗(Dt) and their weights.



4.4 Generating Candidate Formulae and Action models

In steps 6 and 7, using the predicates and action schemas fromDt, we will generate
all the possible action models by doing a combination between them. We initially asso-
ciate each candidate formulae with a weight of zero to indicate that no contribution is
provided initially.

From the definition ofWPLL, we can see that the larger theWPLL is, the more
probable the formulaeF ∗(Dt) are satisfied byDBs, i.e. the more similar the source
domain and the target domain (from whichDBs are attained) are. Thus, we useWPLL to
measure the similarity between source/target domains, andthe weights of the resulting
formulaeF ∗(Dt) to transfer information of the “similarity”. We exploit theidea that
the “similarity” information is strengthened (weakened) when other domains strengthen
(weaken) it, by simply adding up the weights “wj = wj + wk” in step 10. With the
weights attained by steps 7-12, in step 13 we learn weights ofthe candidate formulas
by the algorithm of Fig.3.

From the learning process ofWPLL, we can see that the optimization of WPLL
indicates that when the number of true grounding offi is larger, the corresponding
weight offi will be higher. In other words, the larger the weight of a candidate formula
is, the more likely to be true that formula will be. When generating the final action
models from these formulae in step 14, we need to determine a threshold, based on
the validation set of plan traces and our evaluation criteria (definition of error rate), to
choose a set of formulae converted to action models in step 15.

5 Experiments

5.1 Data Set and Evaluation Criteria

We collect plan traces from the following planning domains:briefcase3, elevator4, de-
pots5, driverlog3, the plan traces numbers of which are 150, 150, 200 and 200 respec-
tively. These plan traces are generated by generating plansfrom the given initial and
goal states in these planning domains using the human encoded action models and a
planning algorithm, FF planner6. Each of the domains will be used as the target do-
main in our experiment. The source domains are:briefcase, elevator, depots, driverlog,
zenotravel3.

We define error rates of our learning algorithm as the difference between our learned
action models and the hand-written action models that are considered as the “ground
truth”. If a precondition appears in the preconditions of our learned action models
but not in the ones of hand-written action models, the error count of preconditions,
denoted byE(pre), increases by one. If a precondition appears in hand-written ac-
tion models but not in our learned action models,E(pre) increases by one. Like-
wise, error count of effects are denoted byE(eff). Furthermore, we denote the total

3 http://www.informatik.uni-freiburg.de/ koehler/ipp.html
4 http://www.cs.toronto.edu/aips2000/
5 http://planning.cis.strath.ac.uk/competition/
6 http://members.deri.at/ joergh/ff.html
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Fig. 4. Accuracy with different thresholds and percentage of observable intermediate states for
learning action models ofbriefcaseanddepots

number of all the possible preconditions and effects of action models asT (pre) and
T (eff), respectively. In our experiments, the error rate of an action model is defined
asR(a) = 1

2 (E(pre)/T (pre)+ E(eff)/T (eff)), where we assume the error rates of
preconditions and effects are equally important, and the range of error rateR(a) should
be within [0,1]. Furthermore, the error rate of all the action modelsA is defined as
R(A) = 1

|A|

∑
a∈A R(a), where|A| is the number ofA’s elements.

5.2 Experimental Results

The evaluation results oft-LAMP in two domains are shown in Fig.4. The red curve
(I) is the learning result without transferring any information from other domains; the
blue curve (II) is the learning result with transferring information from the most similar
domain based onWPLL; the green curve (III) is the result with transferring informa-
tion from the least similar domain based onWPLL; the black curve (IV) is the result
with transferring information from all the other source domains (when learning action
models ofbriefcase, the source domains areelevator, depots, driverlog, zenotravel).
From these two figures, we can see that, the result by transferring information from all
the other source domains is the best. Furthermore, by comparing the results of (II) and
(III), we can see that, when we choose the most similar domainfor transferring, the
result is generally better than choosing the least similar domain, i.e. the score function
WPLL works well in measuring the similarity of two domains.

The first row of Fig.4 shows the result of learning the action models ofbriefcase
with transferring the information fromdepots, driverlog, zenotravel, elevator, while the
second row shows the result of learning the action models ofdepotswith transferring
the information frombriefcase, driverlog, zenotravel, elevator. We have chosen differ-
ent thresholds with weights 1.0, 0.5, 0.1 and 0.01 to test theeffect of the threshold on
the performance of learning. The results show that generally the threshold can be nei-
ther too large nor too small, but the performance is not very sensitive to the choice of



the value. An intuitive explanation is that, a threshold that is too large may lose useful
candidate formulae, and a threshold that is too small may contain too many noisy can-
didate formulae that will affect the overall accuracy of thealgorithm. This intuition has
been verified by our experiment. In our experiment, it can be shown that when we set
the threshold as 0.5, the mean average accuracy is the best.

Our experiment shows that in most cases, the more states thatare observable, the
lower the error rate will be, which is consistent with our intuition. However, there are
some other cases, e.g. when threshold is set to 0.01, when there are only1/4 of states
that are observable, the error rate is lower than the case when 1/3 of states are observ-
able.

From our experiment results, we can see that transferring useful knowledge from
another domain will help improve our action model learning result. On the other hand,
determining the similarity of two domains is important.

6 Conclusion

In this paper, we have presented a novel approach to learn action models through trans-
fer learning and a set of observed plan traces. we propose a method to measure the sim-
ilarity between domains and make use of the idea ofMarkov Logic Networksto learn
action models by transferring information from other domains according to “similar-
ity”. Our empirical tests show that our method is both accurate and effective in learning
the action models via information transfer. In the future, we wish to extend the learn-
ing algorithm to more elaborate action representation languages including resources
and functions. We also wish to explore how to make use of otherinductive learning
algorithms to help us learn better.
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