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Abstract. Al planning requires action models to be given in advancevéier,
it is both time consuming and tedious for a human to encodadtien models by
hand using a formal language such as PDDL, as a result, tggation models is
important for Al planning. On the other hand, the data beisgduto learn action
models are often limited in planning domains, which makedehrning task very
difficult. In this paper, we present a new algorithm to leacticen models from
plan traces by transferring useful information from othemdins whose action
models are already known. We present a method of buildingteiaie measure
the shared information and transfer this information adicay to this metric. The
larger the metric is, the bigger the information is transf@r In the experiment
result, we show that our proposed algorithm is effective.

1 Introduction

Planning systems require action models as input. A typiegi i@ describe action mod-
els is to use action languages such as the planning domaintes language (PDDL)
[6]. A traditional way of building action models is to ask dam experts to analyze a
planning domain and write a complete action model represent However, it is very
difficult and time-consuming to build action models in compieal world scenarios in
such a way, even for experts. Thus, researchers have edp¥ages to reduce the human
efforts of building action models by learning from obseresxdmples or plan traces.

However, previous algorithms and experiments show thadvrachodel learning
is a difficult task and the performances of the state-ofattealgorithms are not very
satisfying. A useful observation is that in many differelarming domains, there exists
some useful information that may be “borrowed” from one domt@another, provided
that these different domains are similar in some aspecisafiicular, we say that two
domains A and B are similar if there is a mapping between samdigates of the two
domains, in that the underlying principle of these actiatthiough their corresponding
predicates are similar, resemble inherent similaritiesptsuch a mapping can enable
us to learn the action model in domain B by the mapping froniehmed action model
in domain A [9].

In this paper, we present a novel action model learning d@hlyarcalled¢- LAMP
(transferLearningAction Models other domaisWe use the shared common informa-
tion from sourcedomains to help to learn action models frortasgetdomain (we call
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the domains whose information is transfersedircedomains, while the domain from
which the action models need to be learndgdrgetdomain). We propose a method of
building a metric to measure the “similarity” between twontiins, which is a difficult
and not being answered question in planning domainsAMP functions in the follow-
ing three steps. Firstly, we encode the input plan tracesgragpositional formulas that
are recorded as@B. Secondly, we encode action models as a set of formuladlysina
we learn weights of all formulas by transferring knowledget source domains, and
generate action models according to the weights of formulas

The rest of the paper is organized as follows. We first givedinition of our
problem and then describe the detailed steps of our algorifthen we will discuss
some related works. In the experiment section, we will eat@wur algorithm in five
planning domains of transfer learning action models antue our transfer learning
framework. Finally, we conclude the paper and discuss éutwork.

2 Related Work

Recently, some researchers have proposed various methieadsri action models from
plan traces automatically. Jim, Jihie, Surya, Yolanda & &enson [1] try to learn
action models from plan traces with intermediate obsesuatiWhat they try to learn
are STRIPS-models [5, 6]. One limitation of their algorittenall the intermediate states
need to be known. Yang, Wu and Jiang designed an algoritHedc&RMS [2], which
can learn action models from plan traces with only partitdrimediate observations,
even without observations.

Another related work is Markov Logic Networks (MLNs)[4]. MNLis a powerful
framework that combines probability and first-order logidMLN is a set of weighted
formulae to soften constraints in first-order logic. The mraiotivation behind MLN to
“soften” constraints is that when a world violates a formnla knowledge base, it is
less probable, but not impossible.

In the transfer learning literature, Lilyana, Tuyen and Rand[7] address the prob-
lem of how to leverage knowledge acquired in a source domamprove the accuracy
and speed of learning in a related target domain. [9] praptuskearn action models by
transferring knowledge from another domain, which is thet firy to transfer knowl-
edge across domains.

3 Problem Definition

We represent a planning problem7s= (X, so, g), whereX' = (S, A, ~) is the plan-
ning domainsgy is the initial state, and is the goal state. I, S is the set of states} is
the set of actionsy is the deterministic transition function, which§sx A — S. A so-

lution to a planning problem is called a plan, an action seqaéz, a1, . . ., a,) which
makes a projection frorg, to g. Eacha; is anaction schemaomposed of a name and
zero or more parameters.@lan traceis defined ag" = (s, ao, 51,1, - -+, Sn, an, g)s

wheres;, ..., s, are partial intermediate state observations that are aldevbe empty.
We state our learning problem as: given as input (1) a setaf places? in a
target domain(that is, the domain from which we wish to learn the action eisy



Fig. 1.an example of our problem definition (input and output)

source
domains:

Depots, elevator, **

predicates:
(at ?y-portable ?x-location) (in ?x-portable) ...
action schemas:

m- 1 - 1
input: Target (move ?m-location ?l-location)

domain:
briefcase

plan trace T: (is-at IT) (at oI IT) (02 12),

(put-in ol 11) (move 11 12) (put-in 02 12) (move 12
home), (is-at home) (at ol home) (at 02 home)
plan trace 2: -+

(move ?m-location ?l-location)

preconditions: (is-at ?m)

output: | Effects: (and (is-at ?I) (not (is-at ?m)) (forall (?x-portable)
(when (in ?x) (and (at ?x ?1) (not (at ?x ?m)))))

(2) the description of predicates and action schemas inattyget domain, and (3) the
completely available action modelssource domaingOur algorithm¢- LAMP outputs
preconditions and effects of each action model. An examflesoinput and output are
shown in Fig.1.

4 The Transfer Learning Algorithm

Before giving our algorithm- LAMP, we present an overview of the algorithm as shown
in Fig.2. In the following subsections, we give the detachption of the main steps

Fig. 2. an overview of the- LAMP algorithm

the +-LAMP algorithm:

input: source domain descriptions {D,, D,, ..., D,}, plan traces from the target domain,
action schemas of the target domain D,.

output: action model descriptions of the target domain.

step 1. encode each plan trace as a formula in conjunctive form.
step 2. for each source domain D;, do

step 3. encode all the action models of the domain D; as a list of formulae F(D,).
step 4. find the best mapping MAP; between D, and D,, the resulting formulae F'(D,) and their weights.
stepS. end

step 6. generate candidate formulae to describe all the possible action models.
step 7. set the initial weights of all the candidate formulae as zero.
step 8. for each candidate formula f; and its corresponding weight w; do

step 9. for each MAP;, do

step 10. if f; is the same as f; of the resulting F*(D,) of MAP;, then w=w;+wy.
step 11. end

step 12. end

step 13. learn weights of all the candidate formulae which are initially weighted by step 7-12.
step 14. select a subset of candidate formulae whose weights are larger than a threshold.
step 15. convert the selected candidate formulae to action models, and return.

which are highlighted.



4.1 Encoding Each Plan Trace as a Proposition Database

As is defined in the problem definition, each plan trace carrieéiypstated as an action
sequence with observed states, including initial stategaradistate. We need to encode
states and actions which are also called state transitibagepresent facts that hold
in states using propositional formulae, e.g. considebtiefcasedomain in Fig.1. We
have an objeabl and a locatiol. We represent the state where the obgcis in the
briefcase and the briefcase is at locatibnvith the propositional formuldn(ol) A is-
at(I1), wherein(ol) andis-at(I1) can be viewed as propositional variables. A model of
the propositional formula is the one that assigns true Maltiee propositional variables
in(ol) andis-at(I1). Every object in a state should be represented by the pridmuesi
formula, e.g. if we have one more locatit®) the above propositional formula should
be modified asin(o1)A is-at(11) A —is-at(12). The behavior of deterministic actions is
described by a transition function For instance, the actianove(l1,12)in Fig.1 is de-
scribed byy(s1, move(l1,12)) = s2. In s1, the briefcase is at locatidh, while in so, it
is atl2. The states; andss can be represented hg:at(l1) A —is-at(I2) and—is-at(l1)
A is-at(12). We need different propositional variables that hold ifiedént states to spec-
ify that a fact holds in one state but does not hold in anottade sWe introduce a new
parameter in predicates, and represent the transitiontlieratates; to the states, by
is-at(11, s1) A —is-at(l2,s1) A —is-at(11, s2) A is-at(l2, s2). On the other hand, the fact
that the actiormove(l1, I2)causes the transition can be represented by a propositional
variablemove(l1, 12,s1). Thus, the function (s1, move(l1,12)) can be represented as
move(l1,12, s1) Ais-at(l1, s1) A-is-at(l2, s1) A—is-af(l1, s3) Ais-at(l2, s2). As aresult,
a plan trace can be encoded correspondingly.

Thus, plan traces can be encoded as a set of propositionalfae, each of which is
a conjunction of propositional variables. As a result, galeln trace can be represented
by a set of propositional variables, whose elements araioctijye. This set is recorded
in a database callddB, i.e. each plan trace is corresponded to its @in

4.2 Encoding Action Models as Formulae

We consider an action model is a strips model plus conditieffacts, i.e. a precon-
dition of an action model is a positive atom, and an effecitizsee a positive/negative
atom or a conditional effect. According to the semantic o&ation model, we equally
encode an action model with a list of formulae, as addressttkifollowing.

T1: If an atomp is a positive effect of an actian, thenp must hold after is executed.
The idea can be formulated byi.a(i) — —p(i) A p(i+1), wherei corresponds te;.
T2: Similar to T1, the negation of an atomis an effect of some action, which
means will never hold(be deleted) aftes is executed, which can be formulated by:
Vi.a(i) — —p(i+l) A p(7).

T3: If an atomp is a precondition ofi, thenp should hold before is executed. That is
to say, the following formula should holdi.a(i) — p(i).

T4: A positive conditional effect, in PDDL form, likeforall z (whenf(z) ¢(z))", is
a conditional effect of some action which means for any, if f(z) is satisfied, then
q(z) will hold after a is executed. Heref(z) is a formula in the conjunctive form of
atoms. Thus a conditional effect can be encoded/by.a(z,i) A f(Z,4) — (T, i+1).



Fig. 3.the algorithm to learn weights and the corresponding s@éBtd.

the algorithm to learn weights w and the corresponding score WPLL:
input: a list of DBs, a list of formulae F'(D,).
output: a list of weights w for the formulae F'(D;), and WPLL.

step 1. initiate w’= (0, ..., 0).

step2. i=0.

step 3. repeat

step 4. calculate WPLL(w') using DBs and F (D).

step 5. w*! = w' + A*OWPLL(w')/ow', where ) is a mall enough constant.
step 6. i=itl;

step 7. until  is larger than a maximal iterative number.
step 8. output w' and WPLL(w").

T5: Similarly, a negative conditional effect of the form likdofall z (when f(Z)
—¢(Z))", can be encoded byti.z.a(z,i) A f(Z,1) — —q(Z,i+1).

By T1-T5, we can encode an action model by requiring its apoading formulas to be
always true. Furthermore, for each source doniainwe can encode the action models
in D; with a list of formulaeF' (D).

4.3 Building the Best Mapping

In step 4, we find the best mapping between the source domaihamarget domain, to
bridge these two domains. To map two domains, firstly, we ne@dap the predicates
between the source domaip; and the target domai®,; secondly, map the action
schemas betweedh; and D;. The mapping process of these two steps is the same,
which is: for each predicatep; in D; and a predicatep; in D,, we build aunifier
by mapping their corresponding names and arguments (wereethat the number of
arguments are the same jn andp,, otherwise, we find next to be mapped with,);
and then substitute all the predicatesiii by this unifier; for eactp; andp,, we repeat
the process diinifier-building andsubstitutionuntil the unifier-building process stops.

By applying a mapping to the list of formula@é(D;), we can generate a new list
of formulae F’*(D;), which encodes action models 8f,. We manage to calculate a
score function orf™* (D;) to measure the similarity betweén andD;. We exploit the
idea of [4, 8] to calculate the scoWPLL (which will be defined soon) when learn-
ing weights of formulae. The calculate process is given m3Jin the highlighted
step (step 4) of Fig.3\WPLL, the Weighted Pseudo-Log-Likelihood [4], is defined as
WPLL(’LU) = Z?:l log Pw(Xl = x”MBz(Xl)) Where,Pw(Xl = I”MBI(XZ)) =
% andCx,—y,) = exp Y cp wifi( Xy = 21, M B, (X)) = is @ pos-
sible world (a databasP B). n is the number of all the possibtgoundingsof atoms
appearing in all the formula@* (D; ), andX; is thelth groundingof the all. M B,.(X;)
is the state of the Markov blanket &f; in . The more detail description is presented
by [4].

Using the algorithm, we will attain one scoi®L L for each mapping. We keep the
mapping (which is mentioned as the best mapping) with thbadsgscora\PLL, the
resultingF* (D, ) and their weights.



4.4 Generating Candidate Formulae and Action models

In steps 6 and 7, using the predicates and action schemas¥gpmve will generate
all the possible action models by doing a combination betvikem. We initially asso-
ciate each candidate formulae with a weight of zero to irtditlaat no contribution is
provided initially.

From the definition oMPLL, we can see that the larger th®eLL is, the more
probable the formulaé™(D,) are satisfied byD Bs, i.e. the more similar the source
domain and the target domain (from whiEtBs are attained) are. Thus, we W#RL_L to
measure the similarity between source/target domainsthengeights of the resulting
formulae F*(D;) to transfer information of the “similarity”. We exploit thdea that
the “similarity” information is strengthened (weakenedjem other domains strengthen
(weaken) it, by simply adding up the weights ;' = w; 4+ w;” in step 10. With the
weights attained by steps 7-12, in step 13 we learn weightiseo€andidate formulas
by the algorithm of Fig.3.

From the learning process &PLL, we can see that the optimization of WPLL
indicates that when the number of true groundingfpfs larger, the corresponding
weight of f; will be higher. In other words, the larger the weight of a ddate formula
is, the more likely to be true that formula will be. When geatarg the final action
models from these formulae in step 14, we need to determiheeshtold, based on
the validation set of plan traces and our evaluation catéefinition of error rate), to
choose a set of formulae converted to action models in step 15

5 Experiments

5.1 Data Set and Evaluation Criteria

We collect plan traces from the following planning domaimsefcasé, elevatof, de-
pots, driverlog®, the plan traces numbers of which are 150, 150, 200 and 2p@ces
tively. These plan traces are generated by generating flamsthe given initial and
goal states in these planning domains using the human et@mi®n models and a
planning algorithm, FF plann&rEach of the domains will be used as the target do-
main in our experiment. The source domains arefcase, elevator, depots, driverlog,
zenotravel.

We define error rates of our learning algorithm as the diffeesbetween our learned
action models and the hand-written action models that ansidered as the “ground
truth”. If a precondition appears in the preconditions of &earned action models
but not in the ones of hand-written action models, the eroamt of preconditions,
denoted byE(pre), increases by one. If a precondition appears in hand-write
tion models but not in our learned action model&pre) increases by one. Like-
wise, error count of effects are denoted Byef f). Furthermore, we denote the total

3 http:/lwww.informatik.uni-freiburg.de/ koehler/ipgrhl
4 http:/lwww.cs.toronto.edu/aips2000/

5 http://planning.cis.strath.ac.uk/competition/

8 http://members.deri.at/ joergh/ff.html
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Fig. 4. Accuracy with different thresholds and percentage of olzd®e intermediate states for

learning action models dfriefcaseanddepots

number of all the possible preconditions and effects ofoacthodels ag’(pre) and
T(eff), respectively. In our experiments, the error rate of amacthodel is defined
asR(a) = £(E(pre)/T(pre) + E(ef f)/T (ef f)), where we assume the error rates of
preconditions and effects are equally important, and thgeaf error rate?(a) should

be within [0,1]. Furthermore, the error rate of all the astimodelsA is defined as
R(A) = ﬁ > qca R(a), where|A| is the number ofd’s elements.

5.2 Experimental Results

The evaluation results af LAMP in two domains are shown in Fig.4. The red curve
() is the learning result without transferring any infortiea from other domains; the
blue curve (ll) is the learning result with transferringanfation from the most similar
domain based ol\PLL; the green curve (lll) is the result with transferring infoa-
tion from the least similar domain based WRLL ; the black curve (IV) is the result
with transferring information from all the other source dains (when learning action
models ofbriefcase the source domains amdevator, depots, driverlog, zenotrayel
From these two figures, we can see that, the result by traimgfénformation from all
the other source domains is the best. Furthermore, by cangpidue results of (II) and
(1), we can see that, when we choose the most similar dorfwitransferring, the
result is generally better than choosing the least simibemain, i.e. the score function

WPL L works well in measuring the similarity of two domains.

The first row of Fig.4 shows the result of learning the actioodels ofbriefcase
with transferring the information fromepots, driverlog, zenotravel, elevatarhile the
second row shows the result of learning the action modetiepbtswith transferring
the information fronbriefcase, driverlog, zenotravel, elevatdve have chosen differ-
ent thresholds with weights 1.0, 0.5, 0.1 and 0.01 to tesetfeet of the threshold on
the performance of learning. The results show that geyettadl threshold can be nei-
ther too large nor too small, but the performance is not venssive to the choice of



the value. An intuitive explanation is that, a threshold tedoo large may lose useful
candidate formulae, and a threshold that is too small mata@otoo many noisy can-
didate formulae that will affect the overall accuracy of ghgorithm. This intuition has
been verified by our experiment. In our experiment, it cantmw that when we set
the threshold as 0.5, the mean average accuracy is the best.

Our experiment shows that in most cases, the more statearthabservable, the
lower the error rate will be, which is consistent with ouwiition. However, there are
some other cases, e.g. when threshold is set to 0.01, whenateonlyl /4 of states
that are observable, the error rate is lower than the case Whseof states are observ-
able.

From our experiment results, we can see that transferriafuknowledge from
another domain will help improve our action model learniaguit. On the other hand,
determining the similarity of two domains is important.

6 Conclusion

In this paper, we have presented a novel approach to ledomasbdels through trans-
fer learning and a set of observed plan traces. we propos¢di® measure the sim-
ilarity between domains and make use of the ideMafkov Logic Networkso learn
action models by transferring information from other donsaaccording to “similar-
ity”. Our empirical tests show that our method is both actiemd effective in learning
the action models via information transfer. In the future, wish to extend the learn-
ing algorithm to more elaborate action representationdaggs including resources
and functions. We also wish to explore how to make use of atidrctive learning
algorithms to help us learn better.
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