
Constraint-based Case-Based Planning Using Weighted
MAX-SAT

Hankui Zhuo1, Qiang Yang2, and Lei Li1

1 Software Research Institute, Sun Yat-sen University, Guangzhou, China.
zhuohank@gmail.com,lnslilei@mail.sysu.edu.cn

2 Computer Science and Engineering, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong.qyang@cse.ust.hk

Abstract. Previous approaches to case-based planning often finds a similar plan
case to a new planning problem to adapt to solve the new problem. However,
in the case base, there may be some other cases that provide helpful knowledge
in building the new solution plan. Likewise, from each existing case there may
be only certain parts that can be adapted for solving the new problem. In this
paper, we propose a novel constraint-based case-based planning framework that
can consider all similar plans in a case base to the current problem, and take only
portions of their solutions in adaptation. Our solution is to convert all similar plan
cases to constraints, and use them to solve the current problem by maximally ex-
ploiting the reusable knowledge from all the similar plan cases using a weighted
MAX-SAT solver. We first encode a new planning problem as a satisfiability
problem, and then extract constraints from plan cases. After that, we solve the
SAT problem, including the extracted constraints, using a weighted MAX-SAT
solver and convert the solution to a plan to solve the new planning problem. In
our experiments, we test our algorithm in three different domains from Interna-
tional Planning Competition (IPC) to demonstrate the efficiency and effectiveness
of our approach.

1 Introduction

Automatic planning aims to find an action sequence that transforms an initial state
to a goal state. Researchers have built different algorithms to solve the problem effi-
ciently. Classical planning involves the generation of plans by state or partial plan space
search in order to satisfy a given goal [16, 17]. Because planning is often difficult to do,
case-based Reasoning has been introduced as a general problem-solving paradigm that
makes use of the notion of analogy. Case-based reasoning uses domain-specific knowl-
edge of previously experienced, concrete problem solutions in order to solve a new
problem. It accomplishes this task by finding a similar past case and reusing it in the
new problem situation. Part of its feasibility is founded onpsychological studies, where
it is found that humans often solve new problems by analogy. Several studies have
given empirical evidence for the dominating role of specific, previously experienced
situations in human problem solving.

In previous case-based planning approaches, one way is to build a plan by transfor-
mational analogy which is a problem-solving technique in which a pre-selected plan,

defined as a sequence of actions, is modified to solve a new problem [20]. Possible
modifications to the plan include removing actions, adding new actions, and changing
the parameters from actions. The CHEF system constructs cooking recipes, which are
plans because recipes are sequences of cooking steps such asboiling a certain amount
of water [7]. These recipes are modified depending on factorssuch as the ingredients
currently available. Interest on case-based planning has revived recently, e.g., in the
work of [5].

The previous approaches on case-based planning mainly focus on adaptinga single
similar plan case in itsentirety, which is found from the set of plan cases, to a new one
that solve a new planning problem. However, there may be someother cases in the same
case base that can provide some helpful knowledge in building the new plan, although
they may not be so similar to the new problem. Similarly, it may not be the case where
a plan is completely reusable; instead, each case that is being reused may only partially
contribute to the new solution. Thus, it is important for us to develop a new method to
exploit all the partially helpful information to help builda new plan, in order to improve
the planning efficiency and improve its effectiveness.

In this paper, we propose a novel case-based planning framework calledMAXCBP,
which stands forusing a weightedMAX-SAT solver to doCases-BasedPlanning . In
this algorithm, we extract the useful information from all the similar plan cases in the
form of constraints. We also formulate the new planning problem as a constraint via a
procedure similar to Graphplan[6]. We add the two sets of constraints to help search for
a plan for a new planning problem.

In particular, ourMAXCBP algorithm works in the following three steps. First, we
encode the planning problem as a set of clauses (a satisfaction problem). Secondly, we
extract constraints that can be also converted as a set of clauses, from all the plan cases.
Finally, we assign weights to all the clauses and solve them with a weighted MAX-
SAT solver. We then convert the final solution to a plan solution to the new planning
problem. Compared to previous approaches, our algorithm has the advantage that it can
selectively use partial knowledge from each case solution as needed to solve a new
problem. In addition, we make use of all available cases in the case base to solve a new
problem.

The rest of the paper is organized as follows. We first give some related work to
this paper, and then address our problem definition. After that, we describe the detailed
steps of our algorithm. In the experiment section, we evaluate our algorithm in three
planning domains. Finally, we conclude the paper and discuss future work.

2 Related Work

2.1 Case-Based Planning

Case-based planning (CBP) uses a set of cases that consist ofa past problem, a goal and
a plan that makes a transition from the problem to the goal [7]. Given a new problem,
CBP systems retrieve one or more cases whose problem is similar to the current one and
adapt the plans contained in the retrieved cases to achieve the new goal. Case retrieval
involves an intelligent search among all cases to find the ones that are adequate to solve

the new problem. The result of the plan adaptation process isa solution that includes
parts that are derived from selected case and new parts derived by first-principle based
planning. [5] analyzes the current state of art in case-based plan adaptation research.
This work presents six dimensions for categorizing variousaspects of existing case-
based plan adaptation algorithms, including the type of transformation, the role of the
case content, the use of case merging, the representation formalism, and the computa-
tional complexity of the algorithm. It uses these dimensions as a framework to compare
various systems.

[11] presents a scheme for learning the case quality based onits utility during a
validation phase. The quality obtained determine the way inwhich these cases are pre-
ferred in the retrieval and replay processes. It shows that the planning performance can
be improved when case utilities are used. [9] proposes a general framework for transfor-
mational analogy. It demonstrates that transformational analogy does not meet a crucial
condition for a well-known worst-case complexity scenario, and that plan adaptation
can be computationally harder than planning from the scratch, is not applicable for
transformational analogy. [8] develops an on-line case-based planning framework. In
this framework, when a plan is retrieved, a plan dependency graph is inferred to capture
the relations between actions in the plan. Then the plan is adapted in real-time using
its plan dependency graph, which allows the system to createand adapt plans in an
efficient and effective manner while performing the task.

2.2 Planning as Satisfiability and Weighted MAX-SAT

[2] develops a formal model of planning based on satisfiability. The satisfiability ap-
proach uses the best-known logical formalization of planning, based on the situation
calculus [4]. In this system, the execution of an action is explicitly represented by the
application of a function to a term representing the state inwhich the action is per-
formed. The satisfiability approach provides not only a moreflexible framework for
stating different kinds of constraints on plans, but also a more accurate theory behind
modern constraint-based planning systems. [3] describes atwo-phase algorithm for
MAX-SAT and weighted MAX-SAT problems. Firstly, it uses theGSAT heuristic to
find a good solution to the problem. Secondly, it uses an enumeration procedure based
on the Davis-Putnam-Loveland algorithm to find a provably optimal solution.

2.3 Learning for Planning

Planning problems are often formulated as heuristic searchand the choice of the heuris-
tic function plays a significant role in the performance of planning systems. [12] pro-
poses an approach to learning heuristic functions from previously solved problem in-
stances in a given domain. The approach is based on approximate linear programming,
which is commonly used in reinforcement learning. [13] presents a novel approach for
boosting the scalability of heuristic planners based on automatically learning domain-
specific search control knowledge from planning contexts inthe form of relational de-
cision trees. The contexts are defined as the set of helpful actions extracted from the
relaxed planning graph of a given state, the goals remainingto be achieved, and the

static predicates of the planning task. [14] introduces a novel feature space for repre-
senting control knowledge. It defines features in terms of information computed via
relaxed plan extraction, which has been a major source of success for non-learning
planners, which gives a new way of leveraging relaxed planning techniques in the con-
text of learning. The authors show that the approach is able to surpass state-of-the-art
non-learning planners across a wide range of planning competition domains.

3 Problem Formulation

In this work, we consider the restrained form of STRIPS model[15], leaving more
complex models such as ADL as our further work. A planning domain is defined in this
work asΣ = (S, A, γ), whereS is the set of states,A is the set of action models,γ is
the deterministic transition functionS×A → S. Each action model inA is composed of
three parts: an action name with zero or more arguments, a setof preconditions which
should be satisfied before the action is executed, and a set ofeffects which are the
results of executing the action. A planning problem can be defined asP = (Σ, s0, g),
wheres0 is an initial state, andg is a goal state. A solution to a planning problem
is an action sequence(a0, a1, . . . , an) called a plan, which makes a projection from
s0 to g. Eachai is anaction schemacomposed of an action name and zero or more
arguments. Furthermore, aplan caseis defined asT = (s0, a0, a1, . . . , an, g). Notice
that the intermediate states between actions can be computed using the action models.
In this paper, we denote a set ofplan casesasPC.

Our problem can be formulated as follows. We are given a planning domainΣ, a set
of plan casesPC and a new plan problemP . Our algorithmMAXCBP outputs a plan for
the new plan problemP using the helpful information fromPC. An example problem
description is given in Table 1, which is from the domain ofblocks3.

4 TheMAXCBP Algorithm

Our solution is to first encode the new planning problem into aconstraint satisfaction
problem. The idea similar to Graphplan [6], where we consider K steps of actions in
which to solve a problem. When we solve the problem using a constraint satisfaction
problem formulation, the solution may be time-consuming, Thus, we make use of the
knowledge from the case basePC, which we convert to another set of constraints. The
two sets of constraints are combined into a new satisfiability problem, which is solved
using a MAXSAT solver.

In the following, we first give an overview of our algorithmMAXCBP. A detailed
description of each steps will be given in sections 4.1-4.4.

4.1 Encoding Planning Problem

In step 1 of Algorithm 1, we encode a planning problemP as a satisfiability problem
[2], which is simply a set of axioms with the property that anymodel of the axioms

3 http://www.cs.toronto.edu/aips2000/

Table 1.an example problem description

input: the domain ofblocks
predicates action models
(on ?x - block ?y - block)(pick-up ?x - block)
(ontable ?x - block) preconditions: (clear ?x)(ontable ?x)(handempty)
(clear ?x - block) effects: (holding ?x)(not(ontable ?x))(not(clear ?x))(not(handempty))
(handempty) (put-down ?x - block)(preconditions & effects omitted)
(holding ?x - block) (stack ?x - block ?y - block)(preconditions & effects omitted)

(unstack ?x - block ?y - block)(preconditions & effects omitted)

input: plan cases
plan case 1: (ontable A) (ontable B) (clear A) (clear B) (handempty), (pick-up A)

(stack A B), (handempty) (on A B)
plan case 2: (ontable B) (on A B) (clear A) (handempty), (unstack A B) (put-down A)

(pick-up B) (stack B A), (on B A) (ontable A)
...

input: a new planning problem
initial states0 goalg
(ontable A) (clear A) (on A B)
(holding B) (ontable B)

output: a plan for the new planning problem
(put-down B) (pick-up A) (stack A B)

Algorithm 1 Overview of ourMAXCBP algorithm
Input: a new planning problemP = (Σ, s0, g), a set of plan casesPC;
Output: a planP for the planning problemP ;

1: we first consider a plan graph according to Graphplan [6], where the plan is of lengthk (k is
set to one initially, and incremented by one if no solution isfound). We encode the planning
problemP as a set of clausesC (a satisfaction problem) for a solution plan of up to length
k;

2: build constraints C1-C5 fromPC;
3: assign each constraint of C1-C5 with its appearing frequency as its weight;
4: assign each clause inC with a high weight that the clause should hold;
5: solve all the weighted constraints with a weighted MAXSATsolver;
6: if no solution is found, we incrementk by one, and go to step 1.
7: convert the solved result to a planP ;
8: return P ;

corresponds to a valid plan. Some of these axioms describe the initial s0 and goal states
g. For the example in Table 1,s0 andg can be described as

(ontable A 1) ∧ (clear A 1) ∧ (holding B 1) ∧ (on A B ∞) ∧ (ontable B ∞)

The other axioms describe the actions in general, which include the standard effect and
frame axioms, plus others that rule out the anomalous models.

First, we rule out the possibility that an action executes despite the fact that its
preconditions are false. This can be done by asserting that an action implies its precon-

ditions as well as effects; e.g., for preconditions of the action pick-up in Table 1,

∀x, i.(pick-up x i) → (clear x i) ∧ (ontable x i) ∧ (handempty i)

and for effects,

∀x, i.(pick-up x i) → (holding x i+1) ∧ ¬(clear x i+1)

∧¬(ontable x i+1) ∧ ¬(handempty i+1)

It is interesting to note that in this formulation preconditions and effects are treated
symmetrically.

Next, we state that only one action occurs at a time, e.g.,

∀x, x′, i.(x 6= x′) → ¬(pick-up x i) ∨ ¬(pick-up x′ i)

Finally, we assert that some action occurs at every time step. This is not a significant
restriction, since we can always introduce an explicit “do nothing” action if desired. For
the actionpick-up in Table 1, the axiom schema is

∀i < N.∃x, (pick-up x i)

(An existentially-quantified formula expands to the disjunction of its instantiations.)
If a planning problem is specified by asserting a complete initial state then these

axioms guarantee that all models correspond to valid plans.This is so because every
model contains a sequence of actions whose preconditions are satisfied, and the execu-
tion of an action in a state completely determines the truth-values of all propositions in
the next state. The only model of the simple two step planningproblem is the intended
model containing(put−down B 1), (pick−up A 2) and(stack A B 3). A simple
planning system can be constructed by linking a routine thatinstantiates such a given
set of axiom schemas and initial and goal state specifications to a Boolean satisfiability
algorithm.

4.2 Building Constraints

In step 2, we wish to build constraints to represent the relationship between actions in
PC. We observe that there are five kinds of relationships between each two actions in
a plan case, i.e.,

1. one action provides a precondition for its subsequent action (we call this relation-
ship as anadd-pre constraint);

2. one action adds an effect but deleted by its subsequent action (we call this relation-
ship as anadd-del constraint);

3. one action deletes an effect but added by its subsequent action (we call this rela-
tionship as adel-add constraint);

4. one action shares a precondition with its subsequent action (we call this relationship
as apre-pre constraint);

5. a precondition of one action is deleted by its subsequent action (we call this rela-
tionship as apre-del constraint).

We denote a plan casepc ∈ PC aspc = (a1, a2, . . . , an), each action pair inpc as
〈ai, aj〉 where1 ≤ i < j ≤ n. We formulate the idea as follows.

C1: add-pre constraints For each action pair〈ai, aj〉, the idea thatai provides a pre-
condition foraj is, there is a propositionp which is added byai and used as a
precondition ofaj . We denote a list of effects added byai asaddi, and a list of
preconditions ofaj asprej . Then, we can formulate this constraint as follows.

p ∈ addi ∧ p ∈ prej

where parameters ofp are included byai andaj . Intuitively, the actionaj requires
thatai should be executed first in a plan, thataj can be executed and produce some
useful effects.

C2: add-del constraints For each action pair〈ai, aj〉, the idea thatai adds an effect
but deleted byaj is, there is a propositionp which is added byai and used as a
precondition ofaj . We denote a list of effects deleted byaj asdelj. Then, we can
formulate this constraint as follows.

p ∈ addi ∧ p ∈ delj

Intuitively, aj needs to be executed to deleted a redundantly added effect byai, that
no unnecessary actions will be executed afteraj in a plan.

C3: del-add constraints For each action pair〈ai, aj〉, there is a propositionp which is
deleted byai and added byaj . Then, this constraint can be formulated by

p ∈ deli ∧ p ∈ addj

This constraint specifies that,aj is needed to add an effect which is unexpectedly
deleted byai.

C4: pre-pre constraints For each action pair〈ai, aj〉, there is a propositionp which is
a precondition ofai andaj . Then, this constraint can be formulated by

p ∈ prei ∧ p ∈ prej

This constraint specifies that different actions may be executed together under the
same preconditions, e.g., frame axioms which are not changed between these ac-
tions in a plan.

C5: pre-del constraints For each action pair〈ai, aj〉, there is a propositionp which is
a precondition ofai but deleted byaj . Then, this constraint can be formulated by

p ∈ prei ∧ p ∈ delj

This constraint specifies thataj should be executed to deletep that actions with the
preconditionp will not be executed again in a plan.

With respect to the restrained form of STRIPS model, we assert that the above five
kinds of constraints encode all the possible relationship between actions. Before giving
proof to this conclusion, we provide the following two requirements according to the
restrained form of STRIPS model, i.e.,

R1: A propositionp added by actionai should not be a precondition ofai, i.e.,

p ∈ addi → p 6∈ preStatei

wherepreStatei is a list of propositions that exist beforeai is executed. Notice
thatprei ⊆ preStatei.

R2: A propositionp deleted by actionai should be a precondition ofai, i.e.,

p ∈ deli → p ∈ prei

Then, we have the theorem under the conditions of R1-R2, as shown in the following.
Notice that, when we consider a proposition referring to an action pair 〈ai, aj〉, we
assume that there is no other actions betweenai andaj that affect the proposition.
Theorem: constraints C1-C5 encode all the possible relationships between two actions
of 〈ai, aj〉 in a plan.
proof: For each action pair〈ai, aj〉, the relationships betweenai andaj can be specified
as whether or not, a propositionp in addi,prei, or deli is also inaddj , prej , or delj.
That is to say, there are nine kinds of relationships:{p ∈ addi∧p ∈ prej , p ∈ addi∧p ∈
addj , p ∈ addi∧p ∈ delj, p ∈ deli∧p ∈ prej , p ∈ deli∧p ∈ prej , p ∈ deli∧p ∈ addj ,
p ∈ deli∧p ∈ delj, p ∈ prei∧p ∈ prej , p ∈ prei∧p ∈ addj , andp ∈ prei∧p ∈ delj}.
In another word, we only need to prove that{p ∈ addi∧p ∈ addj , p ∈ deli∧p ∈ prej ,
p ∈ deli ∧ p ∈ delj , andp ∈ prei ∧ p ∈ addj} can be deduced by C1-C5, or they are
contradictive with R1-R2.

First, if p ∈ addi ∧ p ∈ addj holds, thenp ∈ preStatej holds. That is to say,
p ∈ addj ∧ p ∈ preStatej holds, which is contradictive with R1. Thus,p ∈ addi ∧ p ∈
addj is contradictive with R1.

Second, ifp ∈ deli ∧ p ∈ prej holds, thenp 6∈ preStatej ∧ p ∈ prej holds. Since
prej ⊆ preStatej holds,p 6∈ preStatej ⇒ p 6∈ prej , which impliesp 6∈ prej ∧ p ∈
prej , i.e., contradiction is generated.

Third, if p ∈ deli ∧ p ∈ delj holds, thenp 6∈ preStatej ∧ p ∈ delj holds. And
thenp 6∈ preStatej ∧ p ∈ prej holds. Similar to the second one, contradiction will be
generated.

Finally, from C3, we havep ∈ deli ∧ p ∈ addj . Then we havep ∈ prei ∧ p ∈ addj

by R2. On the other hand, if we havep ∈ prei ∧p ∈ addj , then we havep ∈ prei ∧p 6∈
preStatej by R1, which impliesp ∈ deli. Thus,p ∈ deli ∧ p ∈ addj holds. That is
to say,p ∈ prei ∧ p ∈ addj is unnecessary, since C3 and R1-R2 have encoded the
information it provides.

Briefly, by considering R1-R2, C1-C5 have encoded all the possible relationships
betweenai andaj . �

4.3 Assigning Weights

By steps 1-2, we have built a list of constraints. In this section, we present how to assign
weights to constraints, which corresponds to steps 3-4 of Algorithm 1. Our basic idea
is that (1) the weights of constraints built by step 1 should be high enough to ensure
a planning problem being solved correctly; (2) the correct information included by the
plan casesPC corresponds to the constraints frequently satisfied byPC, while the

other information corresponds to the constraints infrequently satisfied. Thus, to explore
the correct information, we calculate the frequency of constraints satisfied byPC as
weights. Based on this idea, we give the algorithm of assigning weights to constraints
in Algorithm 2.

Algorithm 2 assigning weights to constraints
Input: a planning domainΣ, a set of plan casesPC;
Output: the weightsW1, W2, W3, W4, W5 for C1, C2, C3, C4, C5;

1: C1 = C2 = C3 = C4 = C5 = ∅ are sets of constraints of C1-C5 respectively;
2: for each plan casepc ∈ PC do
3: for each two actionsai andaj in pc do
4: if i < j and there is a propositionp that is not affected by actions betweenai andaj

(can be asserted by executing the actions usingΣ) then
5: for k = 1 to 5do
6: if p, ai andaj form a constraintc that satisfies Ckthen
7: putc in Ck;
8: end if
9: end for

10: end if
11: end for
12: end for
13: for k = 1 to 5do
14: unifyCk into variable form;
15: count the appearing number of each constraint inCk; the results are stored in a vector

Wk, viewed as weights;
16: end for
17: return W1, W2, W3, W4, W5;

In step 14 of Algorithm 2, each constraint inCk is unified by substituting all the
parameters ofp, ai andaj with unified variables. We get the weights of constraints
of C1-C5. Since we wish to solve a new planning problem correctly, we set weights
(denoted asW0) of constraints (clauses, denoted asC) generated in step 1 of Algorithm
1 as high as possible, by considering the effect of R1-R2 simultaneously. To do this, we
first find the maximal value fromW1, W2, . . . , W5, which is denoted aswmax. Then,
we setW0 by the following way:

∀k > 0, W0(k) = βwmax

whereW0(k) is a weight ofkth constraint (clause) inC. β is a parameter to adjust the
value ofW0(k). By setting different value ofβ, the weights of constraints inC will
be changed. As a result, the importance of the constraints inC will be changed corre-
spondingly in the whole solving process of our algorithmMAXCBP. In our subsequent
experiments, we will test different value ofβ to see its effect on the experiment result.

4.4 Obtaining a Final Solution Plan

In steps 5-7 of Algorithm 1, we solve the weighted constraints of C and C1-C5 using
a weighted MAX-SAT solver, the result of which is an assignment to all the axioms of
constraints. With the assignment, we attain a plan by this way: first, we select all the
axioms assigned with atrue value; and then we convert all the selected axioms, which
represent actions being executed or not, to a plan. Next, we will give a whole example
for our algorithmMAXCBP in the following.

Example: For the planning problem in Table 1, the solving process of our algorithm
MAXCBP is shown in Fig. 1. In this figure, the omitted parts denoted by“...” are the ones
can be builded similarly by what are builded prior to them. Insteps 3 and 4, the numbers
“2” and “ β ∗ 2” are weights of C1-C5 and C respectively. In step 6, except the ones
assigned to be true, there are other propositions assigned to be false or true (e.g., initial
state and goal), which are not shown in the figure (denoted by “...”). From this example,
we can see the detail steps about how to find a plan using a weight MAX-SAT solver.

5 Experiment Results

In this section, we evaluate our algorithmMAXCBP in the following three benchmark
planning domains:blocks, depots4 anddriverlog4. We generated 150 plan cases from
each domain. Furthermore, we generated 50 planning problems from each domain,
which will be solved by our algorithmMAXCBP. We evaluateMAXCBP by testing the
running time and average length of all the plans according todifferent number of cases
and different value ofβ which is a coefficient ofwmax. Notice that we consider the ef-
ficiency and effectiveness of our algorithmMAXCBP by testing the running time and av-
erage length of plans respectively. We run our algorithm on the PC with CPU 2.26GHZ
and memory 1GMB. We define the average length of all the plans as

A =

∑
p∈P lengthof(p)

|P |

whereP is a set of plans and the procedurelengthof(p) returns the length of the plan
p. In the following, we give the experimental results according to different number of
cases and different values ofβ.

5.1 Different Number of Cases

In this experiment, we test the running time of our algorithmaccording to different
number of plan cases being used in three different domains. The result is shown in
Fig. 2, where the vertical line denotes the CPU time which is taken to solve all the
50 planning problems, and the horizontal line denotes the number of plan cases. In
this figure, likewise for Fig. 4, the horizontal line signed with “without cases” shows
the running result with the SATPLAN5 without exploiting any information of plan

4 http://planning.cis.strath.ac.uk/competition/
5 http://www.cs.rochester.edu/u/kautz/satplan/index.htm

---- Begin ----

Step 1: initial state and goal: (ontable A 1) ^ (clear A 1) ^ (holding B 1) ^ (on A B) ^ (ontable B)

 action: forall x, i. (pick-up x i) (clear x i) ^ (ontable x i) ^ (handempty i)

 other constraints: forall x, x', i. (x x') ¬(pick-up x i) V ¬(pick-up x' i)

 forall i < N, exists x. (pick-up x i)

Step 2: C1-C5 from plan cases 1 (likewise for plan case 2):

C1 add-pre constraints: (holding A 2) add(pick-up1) ^ (holding A 2) pre(stack2)

C2 add-del constraints: (holding A 2) add(pick-up1) ^ (holding A 2) del(stack2)

Step 3: assigning weights of C1-C5:

2 (holding A 2) add(pick-up1) ^ (holding A 2) pre(stack2)

2 (holding A 2) add(pick-up1) ^ (holding A 2) del(stack2)

Step 4: assigning weights of C:

*2 (ontable A 1) ^ (clear A 1) ^ (holding B 1) ^ (on A B) ^ (ontable B)

*2

Step 5: solving weighted clauses from Step 3 and Step 4 using a weighted MAX-SAT solver, the

result is:

 (put-down B 1) true

 (pick-up A 2) true

 (stack A B 3) true

Step 6: convert the result of Step 5 to a plan to the new planning problem:

 (put-down B) (pick-up A) (stack A B)

---- End ----

Fig. 1. an example of solving a new planning problem usingMAXCBP

cases, and the curve signed with “with cases” shows the running result of our algorithm
MAXCBP.

From Fig. 2, we find that the running time of our algorithmMAXCBP that exploits
the information of plan cases is generally lower than the onewithout using any infor-
mation. Furthermore, from the curves in Fig. 2 (a)-(c), we also find that the CPU time
of our algorithmMAXCBP goes down when the number of plan cases goes up. That is
because, the more the plan cases are given, the more the information can be used, that
a plan can be found byMAXCBP more efficiently with the help of the information.

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

↑
without cases

← with cases

(a) blocks

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

↑
without cases

← with cases

(b) depots

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

← with cases

(c) driverlog

↑
without cases

Fig. 2. the CPU time with respect to the number of plan cases

To see the effect our algorithmMAXCBP introduces, we show the result of the aver-
age of plan lengthA with respect to the number of plan cases in Fig. 3. From this figure,
we find that the curves are generally go down when the number ofplan cases increases.
That is because, the information of plan cases can helpMAXCBP to find ashorterplan,
rather than alongerone. Generally speaking, ashorterplan to a problem suggests that
the problem is solved more efficiently (with fewer actions).

5.2 Different Values ofβ

In section 4.3, we assign the weights of the clausesC asW0(k) = βwmax, where
different β will result in different CPU time or plan length. The resultscan be seen
from Fig. 4 and 5, where we fix the number of plan cases as 150 andtestβ with the
values from 1 to 5.

For the CPU time in Fig. 4, we find that the CPU time is generallylower when using
the information of plan cases than without it, by comparing the curves denoted with
“with cases” for planning using the case base, and the horizontal lines denoted with
“without cases” to denote planning from first principles without using the case base,
from Fig. 4 (a)-(c). After testing the weight factorβ, we find that the CPU time generally
increases with the value ofβ . That is because, whenβ increases, the information that
plan cases can provide is reduced, which meansMAXCBP will take more CPU time to
find a plan when using less information from the plan cases.

30 60 90 120 150
20

30

40

50

60

70

80

90

number of plan cases

av
er

ag
e

of
 p

la
n

le
ng

th

blocks→

← depots

← driverlog

Fig. 3. the average of plan length with respect to the number of plan cases

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

↑
without cases

← with cases

(a) blocks

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

← with cases

(b) depots

↑
without cases

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

← with cases

(c) driverlog

↑
without cases

Fig. 4. the CPU time with respect to different values ofβ

For the plan length in Fig. 5, we find that the average length ofplans for all the 50
problems is generally going up when the value ofβ increases. Similar to Fig. 4, when
β increases, the effect of plan cases on helping finding a shorter plan is weakened, that
the plans being found byMAXCBP will be longer.

1 2 3 4 5
20

30

40

50

60

70

80

90

β

av
er

ag
e

of
 p

la
n

le
ng

th

blocks→

← depots

← driverlog

Fig. 5. the average length of plans with respect to different valuesof β

From Fig. 2-5, we conclude that, our algorithmMAXCBP, which is to maximally
exploit the information of plan cases, will help improve theefficiency and effectiveness
of finding a plan to a new planning problem.

6 Conclusion

In this paper, we presented a novel approach for case-based planning calledMAXCBP.
Our algorithm makes maximal use of the cases in the case base to find a solution by
maximally exploiting the information of plan cases via using a weighted MAX-SAT
solver. Our system can take a piece of the useful plan knowledge in the form of con-
straints even when the entire plan may not be useful for solving a new problem. Our
empirical tests show that our method is both efficient and effective in solving a new
planning problem. In real world applications, attaining a set of plan cases by hand is
difficult and time-consuming. Thus, in our future work, we will consider the situation
that plan cases are observed automatically by machine such as sensors. In this situation,

plan cases will contain noise, which makes our task more difficult. Thus, one of our
future works is to extend the framework by considering more noisy cases.

Acknowledgment

We thank the support of Hong Kong CERG Grant HKUST 621307, NECChina Lab.

References

1. Vithal Kuchibatla and Hector Munoz-Avila. An Analysis ofTransformational Analogy: Gen-
eral Framework and Complexity. ECCBR, 458-473, 2006.

2. Henry Kautz and Bart Selman. Planning as Satisfiability. ECAI, 1992.
3. Brian Borchers and Judith Furman. A Two-Phase Exact Algorithm for MAX-SAT and

Weighted MAX-SAT Problems. Journal of Combinatorial Optimization, 2(4), 299-306, 1998.
4. John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the Standpoint of

Artificial Intelligence. Machine Intelligence, Pages 463-502, 1969.
5. Hector Munoz-Avila and Michael T. Cox. Case-Based Plan Adaptation: An Analysis and Re-

view. IEEE Intelligent Systems, 2007.
6. Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artificial

Intelligence, Vol.(90), pages 1636-1642, 1997.
7. Hammond K. J. Case-Based Planning: Viewing Planning as a Memory Task. San Diego, CA:

Academic Press, 1989.
8. Neha Sugandh, Santiago Ontanon and Ashwin Ram. On-Line Case-Based Plan Adaptation

for Real-Time Strategy Games. AAAI, 702-707, 2008.
9. Vithal Kuchibatla and Hector Munoz-Avila. An Analysis onTransformational Analogy: Gen-

eral Framework and Complexity. ECCBR, 2006.
10. Javier Bajo, Juan Manuel Corchado and Sara Rodriguez. Intelligent Guidance and Sugges-

tions Using Case-Based Planning. ICCBR, 2007.
11. Tomas de la Rosa, Angel Garcia Olaya and Daniel Borrajo. Using Cases Utility for Heuristic

Planning Improvement. ICCBR, 2007.
12. Marek Petrik and Shlomo Zilberstein. Learning Heuristic Functions Through Approximate

Linear Programming. ICAPS, 2008.
13. Tomas de la Rosa, Sergio Jimenez and Daniel Borrajo. Learning Relational Decision Trees

for Guiding Heuristic Planning. ICAPS, 2008.
14. Sungwook Yoon, Alan Fern and Robert Givan. Learning Control Knowledge For Forward

Search Planning. JMLR, 9 (APR), 683-718, 2008.
15. Richard Fikes and Nils J. Nilsson. Strips: A new approachto the application of theorem

proving to problem solving, Artificial Intelligence, 189-208, 1971.
16. Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Approach.

Berlin, Germany: Springer Verlag, 1997.
17. David Chapman. Planning for Conjunctive Goals. Artificial Intelligence 32: 333-377, 1987.
18. Wilkins, D. E. Recovering from Execution Errors in SIPE.Computational Intelligence 1:

33-45, 1985.
19. Selman, B., Levesque. H. and Mitchell, D. Hard and Easy Distributions of SAT Problems. In

Proc. of the 10th National Conference on Artificial Intelligence, 440-446. San Jose, CA: AAAI
Press/MIT Press, July 1992.

20. Carbonell, J.G. Learning by analogy: formulating and generalizing plans from past experi-
ence. Machine Learning: An Artificial Intelligence Approach. R.S. Michalski, J. G. Carbonell,
and T. M. Mitchell (Eds.). Tioga, Palo Alto, California, 1983.

