Constraint-based Case-Based Planning Using Weighted
MAX-SAT

Hankui Zhud, Qiang Yang, and Lei Lit

! Software Research Institute, Sun Yat-sen University, @alaou, China.
zhuohank@nai | . com I nslilei @mil.sysu.edu.cn
2 Computer Science and Engineering, Hong Kong Universityaéi®&e and Technology,
Clearwater Bay, Kowloon, Hong Kongyang@se. ust . hk

Abstract. Previous approaches to case-based planning often findslargian
case to a new planning problem to adapt to solve the new probtowever,
in the case base, there may be some other cases that proipfid keowledge
in building the new solution plan. Likewise, from each eixigtcase there may
be only certain parts that can be adapted for solving the mellgm. In this
paper, we propose a novel constraint-based case-basedngdramework that
can consider all similar plans in a case base to the currebtgm, and take only
portions of their solutions in adaptation. Our solutioraigonvert all similar plan
cases to constraints, and use them to solve the currengpndiy maximally ex-
ploiting the reusable knowledge from all the similar plasesusing a weighted
MAX-SAT solver. We first encode a new planning problem as #&gability
problem, and then extract constraints from plan casesr A, we solve the
SAT problem, including the extracted constraints, usingeigited MAX-SAT
solver and convert the solution to a plan to solve the newnptanproblem. In
our experiments, we test our algorithm in three differermdms from Interna-
tional Planning Competition (IPC) to demonstrate the afficy and effectiveness
of our approach.

1 Introduction

Automatic planning aims to find an action sequence that foams an initial state
to a goal state. Researchers have built different algosttorsolve the problem effi-
ciently. Classical planning involves the generation ofiglay state or partial plan space
search in order to satisfy a given goal [16, 17]. Becausenitayis often difficult to do,
case-based Reasoning has been introduced as a generehpisatiling paradigm that
makes use of the notion of analogy. Case-based reasoniaglasain-specific knowl-
edge of previously experienced, concrete problem solstiororder to solve a new
problem. It accomplishes this task by finding a similar pastecand reusing it in the
new problem situation. Part of its feasibility is foundedmsychological studies, where
it is found that humans often solve new problems by analogyefl studies have
given empirical evidence for the dominating role of specificeviously experienced
situations in human problem solving.

In previous case-based planning approaches, one way isldicalplan by transfor-
mational analogy which is a problem-solving technique inclita pre-selected plan,

defined as a sequence of actions, is modified to solve a newepndR0]. Possible
modifications to the plan include removing actions, addieg actions, and changing
the parameters from actions. The CHEF system constructsrgpeecipes, which are
plans because recipes are sequences of cooking steps dumilirasa certain amount
of water [7]. These recipes are modified depending on fastack as the ingredients
currently available. Interest on case-based planning éased recently, e.g., in the
work of [5].

The previous approaches on case-based planning mainly éocadapting single
similar plan case in itentirety, which is found from the set of plan cases, to a new one
that solve a new planning problem. However, there may be sxthe cases in the same
case base that can provide some helpful knowledge in bgiltie new plan, although
they may not be so similar to the new problem. Similarly, itynat be the case where
a plan is completely reusable; instead, each case thatrig baised may only partially
contribute to the new solution. Thus, it is important for asievelop a new method to
exploit all the partially helpful information to help buildnew plan, in order to improve
the planning efficiency and improve its effectiveness.

In this paper, we propose a novel case-based planning frarkesalledMAXCBP,
which stands fousing a weightedMAX-SAT solver to d&€CasesBasedPlanning. In
this algorithm, we extract the useful information from &létsimilar plan cases in the
form of constraints. We also formulate the new planning faobas a constraint via a
procedure similar to Graphplan[6]. We add the two sets o§traimts to help search for
a plan for a new planning problem.

In particular, ounMAXCBP algorithm works in the following three steps. First, we
encode the planning problem as a set of clauses (a satisfanthblem). Secondly, we
extract constraints that can be also converted as a setusfadafrom all the plan cases.
Finally, we assign weights to all the clauses and solve théitm avweighted MAX-
SAT solver. We then convert the final solution to a plan solutio the new planning
problem. Compared to previous approaches, our algorittethgeadvantage that it can
selectively use partial knowledge from each case solutioneeded to solve a new
problem. In addition, we make use of all available caseseércdse base to solve a new
problem.

The rest of the paper is organized as follows. We first giveesomated work to
this paper, and then address our problem definition. Aftat; the describe the detailed
steps of our algorithm. In the experiment section, we evealoar algorithm in three
planning domains. Finally, we conclude the paper and dsstutare work.

2 Related Work

2.1 Case-Based Planning

Case-based planning (CBP) uses a set of cases that corssisastfproblem, a goal and
a plan that makes a transition from the problem to the goalG®len a new problem,
CBP systems retrieve one or more cases whose problem isstmthe current one and
adapt the plans contained in the retrieved cases to acliieveetv goal. Case retrieval
involves an intelligent search among all cases to find the thre are adequate to solve

the new problem. The result of the plan adaptation proceasaution that includes

parts that are derived from selected case and new parteddnwfirst-principle based

planning. [5] analyzes the current state of art in case<batn adaptation research.
This work presents six dimensions for categorizing variasigects of existing case-
based plan adaptation algorithms, including the type ofsficrmation, the role of the

case content, the use of case merging, the representatioalfsm, and the computa-
tional complexity of the algorithm. It uses these dimensias a framework to compare
various systems.

[11] presents a scheme for learning the case quality baseéts onility during a
validation phase. The quality obtained determine the wayhiith these cases are pre-
ferred in the retrieval and replay processes. It shows Heaplanning performance can
be improved when case utilities are used. [9] proposes agnemework for transfor-
mational analogy. It demonstrates that transformatiomalcgy does not meet a crucial
condition for a well-known worst-case complexity scenagnd that plan adaptation
can be computationally harder than planning from the shkratcnot applicable for
transformational analogy. [8] develops an on-line casebtalanning framework. In
this framework, when a plan is retrieved, a plan dependeraptuis inferred to capture
the relations between actions in the plan. Then the planagptad in real-time using
its plan dependency graph, which allows the system to ciadeadapt plans in an
efficient and effective manner while performing the task.

2.2 Planning as Satisfiability and Weighted MAX-SAT

[2] develops a formal model of planning based on satisfigbilihe satisfiability ap-
proach uses the best-known logical formalization of plagnbased on the situation
calculus [4]. In this system, the execution of an action iglieitly represented by the
application of a function to a term representing the state/hiich the action is per-
formed. The satisfiability approach provides not only a niterible framework for
stating different kinds of constraints on plans, but alsoaaeraccurate theory behind
modern constraint-based planning systems. [3] describt@®-ghase algorithm for
MAX-SAT and weighted MAX-SAT problems. Firstly, it uses ti&SAT heuristic to
find a good solution to the problem. Secondly, it uses an eratine procedure based
on the Davis-Putnam-Loveland algorithm to find a provablropl solution.

2.3 Learning for Planning

Planning problems are often formulated as heuristic seardtihe choice of the heuris-
tic function plays a significant role in the performance drpling systems. [12] pro-
poses an approach to learning heuristic functions fromipusly solved problem in-
stances in a given domain. The approach is based on appraximear programming,
which is commonly used in reinforcement learning. [13] prés a novel approach for
boosting the scalability of heuristic planners based opraatically learning domain-
specific search control knowledge from planning contexthéform of relational de-
cision trees. The contexts are defined as the set of helpfiongcextracted from the
relaxed planning graph of a given state, the goals remaitdrge achieved, and the

static predicates of the planning task. [14] introducesehfeature space for repre-
senting control knowledge. It defines features in terms @drmation computed via

relaxed plan extraction, which has been a major source afesscfor non-learning

planners, which gives a new way of leveraging relaxed plasteéchniques in the con-
text of learning. The authors show that the approach is abdeitpass state-of-the-art
non-learning planners across a wide range of planning cotigpedomains.

3 Problem Formulation

In this work, we consider the restrained form of STRIPS mddB], leaving more
complex models such as ADL as our further work. A planning dionis defined in this
work asX = (S, A,~), whereS is the set of states] is the set of action models, is
the deterministic transition functio$ix A — S. Each action model id is composed of
three parts: an action name with zero or more arguments,& petconditions which
should be satisfied before the action is executed, and a seffeufts which are the
results of executing the action. A planning problem can dimdé asP = (X, s, g),
where sy is an initial state, and is a goal state. A solution to a planning problem
is an action sequendey, a1, - .., a,) called a plan, which makes a projection from
so to g. Eacha; is anaction schema&omposed of an action name and zero or more
arguments. Furthermore pdan caseis defined ag” = (sg, ag, a1, - . -, an, g). Notice
that the intermediate states between actions can be codpsiteg the action models.
In this paper, we denote a setplfin casesasPC.

Our problem can be formulated as follows. We are given a pfegaiomainy’, a set
of plan cases”C and a new plan problei8. Our algorithmMAXCBP outputs a plan for
the new plan problen® using the helpful information fron®C'. An example problem
description is given in Table 1, which is from the domairbtificks.

4 The MAXCBP Algorithm

Our solution is to first encode the new planning problem intmastraint satisfaction
problem. The idea similar to Graphplan [6], where we considesteps of actions in
which to solve a problem. When we solve the problem using atcaimt satisfaction
problem formulation, the solution may be time-consumirigyg, we make use of the
knowledge from the case bas®’, which we convert to another set of constraints. The
two sets of constraints are combined into a new satisfiglgtioblem, which is solved
using a MAXSAT solver.

In the following, we first give an overview of our algorithWAXCBP. A detailed
description of each steps will be given in sections 4.1-4.4.

4.1 Encoding Planning Problem

In step 1 of Algorithm 1, we encode a planning probl@nas a satisfiability problem
[2], which is simply a set of axioms with the property that angdel of the axioms

% http://www.cs.toronto.edu/aips2000/

Table 1.an example problem description

input: the domain oblocks
predicates action models
(on ?x - block ?y - block)pick-up ?x - block)
(ontable ?x - block) preconditions: (clear ?x)(ontable ?x)(handempty)
(clear ?x - block) effects: (holding ?x)(not(ontable ?x))(not(clear ?xa))(handemptyj)
(handempty) (put-down ?x - block)preconditions & effects omitted)
(holding ?x - block) (stack ?x - block ?y - block)preconditions & effects omitted)
(unstack ?x - block ?y - blocKpreconditions & effects omitted)

input: plan cases
plan case 1: (ontable A) (ontable B) (clear A) (clear B) (hangty), (pick-up A)
(stack A B), (handempty) (on A B)
plan case 2: (ontable B) (on A B) (clear A) (handempty), (acktA B) (put-down A)
(pick-up B) (stack B A), (on B A) (ontable A)

input: a new planning problem

initial statesg goalg
(ontable A) (clear A) |(on AB)
(holding B) (ontable B)

output: a plan for the new planning problem
(put-down B) (pick-up A) (stack A B)

Algorithm 1 Overview of ounvVAXCBP algorithm

Input: a new planning probler® = (X, so, g), a set of plan caseBC;

Output: a planP for the planning probler;
1: we first consider a plan graph according to Graphplan [6Ene the plan is of length (k is
set to one initially, and incremented by one if no solutiofoisnd). We encode the planning
problem”P as a set of clauses (a satisfaction problem) for a solution plan of up to length
k;

: build constraints C1-C5 froRC;;

2

3: assign each constraint of C1-C5 with its appearing fraquas its weight;
4: assign each clause @ with a high weight that the clause should hold;
5: solve all the weighted constraints with a weighted MAXSs®lver;

6: if no solution is found, we incremeitby one, and go to step 1.

7: convert the solved result to a pl&h

8: return P;

corresponds to a valid plan. Some of these axioms descehnittal s and goal states
g. For the example in Table %y andg can be described as

(ontable A 1) A (clear A 1) A (holding B 1) A (on A B c0) A (ontable B c0)

The other axioms describe the actions in general, whicludecthe standard effect and
frame axioms, plus others that rule out the anomalous models

First, we rule out the possibility that an action executespite the fact that its
preconditions are false. This can be done by asserting thatton implies its precon-

ditions as well as effects; e.g., for preconditions of thioagpick-up in Table 1,
Va,i.(pick-up x i) — (clear x i) A (ontable z i) A (handempty i)
and for effects,

Va,i.(pick-up x i) — (holding x i+1) A —(clear i+1)
A= (ontable x i+1) A ~(handempty i+1)

It is interesting to note that in this formulation precoiits and effects are treated

symmetrically.
Next, we state that only one action occurs at a time, e.g.,

Va, o' i(x # ') — —(pick-up x i) V —(pick-up z' 7)

Finally, we assert that some action occurs at every time $t&p is not a significant
restriction, since we can always introduce an explicit “dthing” action if desired. For
the actiorpick-up in Table 1, the axiom schema is

Vi < N.3z, (pick-up x 1)

(An existentially-quantified formula expands to the digjtion of its instantiations.)

If a planning problem is specified by asserting a complet#instate then these
axioms guarantee that all models correspond to valid plahis. is so because every
model contains a sequence of actions whose preconditiersaisfied, and the execu-
tion of an action in a state completely determines the tuatlres of all propositions in
the next state. The only model of the simple two step planpioflem is the intended
model containingput—down B 1), (pick—up A 2) and(stack A B 3). A simple
planning system can be constructed by linking a routineittsantiates such a given
set of axiom schemas and initial and goal state specificatma Boolean satisfiability
algorithm.

4.2 Building Constraints

In step 2, we wish to build constraints to represent theimziahip between actions in
PC. We observe that there are five kinds of relationships betveageh two actions in
a plan case, i.e.,

1. one action provides a precondition for its subsequema¢ive call this relation-
ship as aradd-pre constraint

2. one action adds an effect but deleted by its subsequeondate call this relation-
ship as aradd-del constrairjt

3. one action deletes an effect but added by its subsequion fe call this rela-
tionship as alel-add constraint

4. one action shares a precondition with its subsequeitrag@tie call this relationship

as apre-pre constraint
5. a precondition of one action is deleted by its subsequaitra(we call this rela-

tionship as gre-del constraint

We denote a plan cage € PC aspc = (ai,as,...,a,), €ach action pair ipc as
(ai, a;) wherel < i < j < n.We formulate the idea as follows.

C1: add-preconstraints For each action paifa;, a;), the idea that; provides a pre-
condition fora; is, there is a propositiop which is added by:; and used as a
precondition ofa;. We denote a list of effects added by asadd;, and a list of
preconditions of;; aspre;. Then, we can formulate this constraint as follows.

p € add; \p € pre;

where parameters gfare included by:; anda;. Intuitively, the actioru; requires
thata; should be executed first in a plan, thatcan be executed and produce some
useful effects.

C2: add-del constraints For each action paifa;, a;), the idea that;; adds an effect
but deleted by, is, there is a propositiop which is added by:; and used as a
precondition ofa;. We denote a list of effects deleted byasdel;. Then, we can
formulate this constraint as follows.

p € add; A p € del;

Intuitively, a; needs to be executed to deleted a redundantly added effecttwat
no unnecessary actions will be executed aftein a plan.

C3: del-add constraints For each action paifa;, a;), there is a propositiop which is
deleted byu; and added byt;. Then, this constraint can be formulated by

pE del; ApE addj

This constraint specifies that; is needed to add an effect which is unexpectedly
deleted by;.

C4: pre-pre congtraints For each action paifa;, a;), there is a propositiop which is
a precondition ofi; anda;. Then, this constraint can be formulated by

p Epre; ANp € pre;

This constraint specifies that different actions may be @bezttogether under the
same preconditions, e.g., frame axioms which are not clthhgiveen these ac-
tions in a plan.

C5: pre-del constraints For each action paifa;, a;), there is a propositiop which is
a precondition ofi; but deleted by:;. Then, this constraint can be formulated by

p € pre; Ap € del;

This constraint specifies thaj should be executed to delgi¢hat actions with the
preconditiorp will not be executed again in a plan.

With respect to the restrained form of STRIPS model, we aisat the above five
kinds of constraints encode all the possible relationshtg/ben actions. Before giving
proof to this conclusion, we provide the following two resgments according to the
restrained form of STRIPS model, i.e.,

R1: A propositionp added by actiom; should not be a precondition af, i.e.,
p € add; — p & preState;

wherepreState; is a list of propositions that exist befotg is executed. Notice
thatpre; C preState;.
R2: A propositionp deleted by actiom; should be a precondition af, i.e.,

p € del; — p € pre;

Then, we have the theorem under the conditions of R1-R2,@srsin the following.
Notice that, when we consider a proposition referring to etioa pair (a;, a;), we
assume that there is no other actions betwegeanda; that affect the proposition.
Theorem: constraints C1-C5 encode all the possible relationshifvgden two actions
of (a;, a;) inaplan.

proof: For each action pailu;, a;), the relationships between anda; can be specified
as whether or not, a propositignin add;,pre;, or del; is also inadd;, pre;, or del;.
Thatis to say, there are nine kinds of relationsh{psc add; \p € pre;,p € add;A\p €
add;,p € add;\p € del;j,p € del;Ap € pre;,p € del;Ap € pre;,p € del;A\p € add;,
p € del;\p € del;,p € pre;Ap € prej,p € pre;Ap € add;, andp € pre; Ap € del; }.
In another word, we only need to prove tRate add; Ap € add;, p € del; A\p € pre;,
p € del; Ap € del;, andp € pre; A p € add;} can be deduced by C1-C5, or they are
contradictive with R1-R2.

First, if p € add; A p € add; holds, therp € preState; holds. That is to say,
p € add; Ap € preState; holds, which is contradictive with R1. Thuse add; Ap €
add; is contradictive with R1.

Second, ifp € del; A p € pre; holds, therp & preState; A p € pre; holds. Since
pre; C preState; holds,p & preState; = p & pre;, which impliesp & pre; Ap €
pre;, i.e., contradiction is generated.

Third, if p € del; A p € del; holds, therp ¢ preState; A p € del; holds. And
thenp ¢ preState; A p € pre; holds. Similar to the second one, contradiction will be
generated.

Finally, from C3, we have € del; Ap € add;. Then we have € pre; Ap € add;
by R2. On the other hand, if we hayes pre; Ap € add;, then we have € pre; Ap ¢
preState; by R1, which impliegp € del;. Thus,p € del; A p € add; holds. That is
to say,p € pre; Ap € add; is unnecessary, since C3 and R1-R2 have encoded the
information it provides.

Briefly, by considering R1-R2, C1-C5 have encoded all thesinds relationships
betweeru; anda;. O

4.3 Assigning Weights

By steps 1-2, we have built a list of constraints. In thisisectwve present how to assign
weights to constraints, which corresponds to steps 3-4 gbvithm 1. Our basic idea
is that (1) the weights of constraints built by step 1 showdchigh enough to ensure
a planning problem being solved correctly; (2) the correfdrimation included by the

plan casesPC corresponds to the constraints frequently satisfiedPlay, while the

other information corresponds to the constraints infredyesatisfied. Thus, to explore
the correct information, we calculate the frequency of tmists satisfied by?C' as
weights. Based on this idea, we give the algorithm of ass@mieights to constraints
in Algorithm 2.

Algorithm 2 assigning weights to constraints
Input: a planning domair’, a set of plan caseBC;
Output: the weightdd,, W, Wi, Wy, W5 for C1, C2, C3, C4, C5;
1: C1 = Cy = C3 = Cy = C5 = (are sets of constraints of C1-C5 respectively;
2: for each plan caspc € PC do
3: for each two actions; anda; in pc do
4: if i < j and there is a propositiomthat is not affected by actions betweenanda;
(can be asserted by executing the actions u&ihthen

5 for k=1to 5do
6: if p, a; anda; form a constraint that satisfies Ckhen
7: putcin Cg;
8: end if
9: end for
10: end if
11: endfor
12: end for

13: for k=1to 5do

14: unify Cy into variable form;

15: count the appearing number of each constraininthe results are stored in a vector
Wi, viewed as weights;

16: end for

17: return Wiy, Wa, W3, Wy, Wi;

In step 14 of Algorithm 2, each constraint @), is unified by substituting all the
parameters op, a; anda; with unified variables. We get the weights of constraints
of C1-C5. Since we wish to solve a new planning problem cdigrewe set weights
(denoted a$l) of constraints (clauses, denoted@sgenerated in step 1 of Algorithm
1 as high as possible, by considering the effect of R1-R2Itgmeously. To do this, we
first find the maximal value fromi’y, s, ..., W5, which is denoted a,,.... Then,
we seti, by the following way:

vk > 0, W()(k) = ﬁwmam

whereW, (k) is a weight ofkth constraint (clause) if'. 5 is a parameter to adjust the
value of Wy (k). By setting different value off, the weights of constraints i@ will
be changed. As a result, the importance of the constrair@swill be changed corre-
spondingly in the whole solving process of our algorith®XCBP. In our subsequent
experiments, we will test different value Gfto see its effect on the experiment result.

4.4 Obtaining a Final Solution Plan

In steps 5-7 of Algorithm 1, we solve the weighted constsaoftC' and C1-C5 using
a weighted MAX-SAT solver, the result of which is an assignirte all the axioms of
constraints. With the assignment, we attain a plan by thig fiest, we select all the
axioms assigned with taue value; and then we convert all the selected axioms, which
represent actions being executed or not, to a plan. Next, ilgive a whole example
for our algorithmMAXCBP in the following.

Example: For the planning problem in Table 1, the solving process ofadgorithm
MAXCBP is shown in Fig. 1. In this figure, the omitted parts denotet Byare the ones
can be builded similarly by what are builded prior to themstaps 3 and 4, the numbers
“2" and “ [x 2" are weights of C1-C5 and C respectively. In step 6, exceptahes
assigned to be true, there are other propositions assigobe false or true (e.g., initial
state and goal), which are not shown in the figure (denoted B3Y."From this example,
we can see the detail steps about how to find a plan using a WeigX-SAT solver.

5 Experiment Results

In this section, we evaluate our algoriti#XCBP in the following three benchmark
planning domainsblocks depoté anddriverlog*. We generated 150 plan cases from
each domain. Furthermore, we generated 50 planning prebfeam each domain,
which will be solved by our algorithnivAXCBP. We evaluatevWXCBP by testing the
running time and average length of all the plans accordirifterent number of cases
and different value off which is a coefficient ofv,,,,... Notice that we consider the ef-
ficiency and effectiveness of our algorittWAXCBP by testing the running time and av-
erage length of plans respectively. We run our algorithmherRC with CPU 2.26GHZ
and memory 1GMB. We define the average length of all the plans a

ZPEP lengthof (p)

A =
1P|

whereP is a set of plans and the procedidagthof (p) returns the length of the plan
p. In the following, we give the experimental results accogdio different number of
cases and different values 6f

5.1 Different Number of Cases

In this experiment, we test the running time of our algoritaotording to different
number of plan cases being used in three different domaims.ré&sult is shown in
Fig. 2, where the vertical line denotes the CPU time whichakenh to solve all the
50 planning problems, and the horizontal line denotes thehau of plan cases. In
this figure, likewise for Fig. 4, the horizontal line signedtiw‘without cases” shows
the running result with the SATPLAN without exploiting any information of plan

4 http://planning.cis.strath.ac.uk/competition/
5 http://www.cs.rochester.edu/u/kautz/satplan/index.h

---- Begin ----
Step 1: initial state and goal: (ontable A 1) ~ (clear A 1) ” (holding B 1) * (on A B o) * (ontable B)
action: forall x, i. (pick-up x 1) — (clear x i) * (ontable x i) * (handempty i)

other constraints: forall x, X', 1. (x # x") — —~(pick-up x i) V ~(pick-up x' 1)
forall i <N, exists x. (pick-up x 1)

Step 2: C1-CS5 from plan cases 1 (likewise for plan case 2):
C1 add-pre constraints: (holding A 2) € add(pick-up;) * (holding A 2) e pre(stack,)
C2 add-del constraints: (holding A 2) e add(pick-up,;) * (holding A 2) edel(stack,)

Step 3: assigning weights of C1-C5:
2 (holding A 2) ¢ add(pick-up;) * (holding A 2) e pre(stack,)
2 (holding A 2) < add(pick-up;) ” (holding A 2) € del(stack,)

Step 4: assigning weights of C:
p*2 (ontable A 1) " (clear A 1) ~ (holding B 1) * (on A B «) ” (ontable B o)
p*2

Step S: solving weighted clauses from Step 3 and Step 4 using a weighted MAX-SAT solver, the
result is:

(put-down B 1) true

(pick-up A 2) true

(stack A B 3) true

Step 6: convert the result of Step 5 to a plan to the new planning problem:
(put-down B) (pick-up A) (stack A B)

---- End ----

Fig. 1. an example of solving a new planning problem udi#g<CBP

cases, and the curve signed with “with cases” shows the mgrresult of our algorithm
MAXCBP.

From Fig. 2, we find that the running time of our algorittaXCBP that exploits
the information of plan cases is generally lower than thewitigout using any infor-
mation. Furthermore, from the curves in Fig. 2 (a)-(c), weodind that the CPU time
of our algorithmMAXCBP goes down when the number of plan cases goes up. That is
because, the more the plan cases are given, the more thematfon can be used, that
a plan can be found byAXCBP more efficiently with the help of the information.

(a) blocks (b) depots (c) driverlog
220

N
N
=3
N
N
o

1

200 without cases 200

N
=3
S]

180

o
@
<]
o
@
S

160

=
=)
<]
=
=Y
=]

i
without cases

140 T
without cases

N
Iy
S

cpu time (s)

cpu time (s)

cpu time (s)
/

-
N}
=]

100

o

o

S]
/
=
13
=]
’

. h > with cases 80 >
“#< with cases S - N

- - *- with casgs

~ RS 60 T -4
e ~
40 — 40 40
30 60 90 120 150 30 60 90 120 150 30 60 90 120 150
number of plan cases number of plan cases number of plan cases

80

@
<]

60

-3
3

Fig. 2. the CPU time with respect to the number of plan cases

To see the effect our algorithMAXCBP introduces, we show the result of the aver-
age of plan lengtil with respect to the number of plan cases in Fig. 3. From thisdig
we find that the curves are generally go down when the numbj@anfcases increases.
That is because, the information of plan cases can M&KCBP to find ashorterplan,
rather than dongerone. Generally speaking shorterplan to a problem suggests that
the problem is solved more efficiently (with fewer actions).

5.2 Different Values of 3

In section 4.3, we assign the weights of the clauSeas Wy (k) = SBwma., Where
different 8 will result in different CPU time or plan length. The resuttan be seen
from Fig. 4 and 5, where we fix the number of plan cases as 15Qeshd with the
values from 1 to 5.

For the CPU time in Fig. 4, we find that the CPU time is genetailyer when using
the information of plan cases than without it, by comparing turves denoted with
“with cases” for planning using the case base, and the hatatdines denoted with
“without cases” to denote planning from first principleshvatit using the case base,
from Fig. 4 (a)-(c). After testing the weight fact8rwe find that the CPU time generally
increases with the value of. That is because, whehincreases, the information that
plan cases can provide is reduced, which ma&sCBP will take more CPU time to
find a plan when using less information from the plan cases.

cpu time (s)

180

160

90

80

60

50

average of plan length

40

30

"+ depots

*- -

~
~

~—

20
30

60

90

120

number of plan cases

150

Fig. 3.the average of plan length with respect to the number of pdar<

(a) blocks

140

120

100

80

60

1
without cases

*--with cas
,

qob=——
1

(c) driverlog

(b) depots
220 220
1
200 without cases - 200
e
180 * - 180
/

160 / 160

o) z
> 140 o 140

E / E
2 120 / 3 120

& / 5

/
100 / 100
_ *— with cases
80 - 80
e
60 60,
40 40
2 4 5

»w

-
-
-

without cases

_ *— with cases

mw

Fig. 4.the CPU time with respect to different values®f

For the plan length in Fig. 5, we find that the average lengthlarfs for all the 50
problems is generally going up when the valugdahcreases. Similar to Fig. 4, when
3 increases, the effect of plan cases on helping finding aeshpldn is weakened, that
the plans being found byAXCBP will be longer.

90 T T T I
e
7/
- /7 .
80 »« driverlog
v o3
s ¥
7/

701 ,) R
e .
*6" /
c
o
C
)
o
—
o
()
(=]
IS
©
4
T

Fig. 5.the average length of plans with respect to different vaties

From Fig. 2-5, we conclude that, our algorithVWXCBP, which is to maximally
exploit the information of plan cases, will help improve #fficiency and effectiveness
of finding a plan to a new planning problem.

6 Conclusion

In this paper, we presented a novel approach for case-béeatimg calledvVAXCBP.
Our algorithm makes maximal use of the cases in the case bdig®ita solution by
maximally exploiting the information of plan cases via ysi& weighted MAX-SAT
solver. Our system can take a piece of the useful plan knaeléd the form of con-
straints even when the entire plan may not be useful for sglai new problem. Our
empirical tests show that our method is both efficient andaiffe in solving a new
planning problem. In real world applications, attainingea sf plan cases by hand is
difficult and time-consuming. Thus, in our future work, wdlwbnsider the situation
that plan cases are observed automatically by machine swgamaors. In this situation,

plan cases will contain noise, which makes our task morecdlffiThus, one of our
future works is to extend the framework by considering mansycases.

Acknowledgment

We thank the support of Hong Kong CERG Grant HKUST 621307, NIEB@ha Lab.

References

1. Vithal Kuchibatla and Hector Munoz-Avila. An Analysis Bfansformational Analogy: Gen-
eral Framework and Complexity. ECCBR, 458-473, 2006.

2. Henry Kautz and Bart Selman. Planning as SatisfiabilGAE 1992.

3. Brian Borchers and Judith Furman. A Two-Phase Exact Atlyor for MAX-SAT and
Weighted MAX-SAT Problems. Journal of Combinatorial Optiation, 2(4), 299-306, 1998.
4. John McCarthy and Patrick J. Hayes. Some Philosophicddl®ns from the Standpoint of

Artificial Intelligence. Machine Intelligence, Pages 4632, 1969.

5. Hector Munoz-Avila and Michael T. Cox. Case-Based Plaagdtion: An Analysis and Re-
view. |IEEE Intelligent Systems, 2007.

6. Avrim L. Blum and Merrick L. Furst. Fast planning througlapning graph analysis. Artificial
Intelligence, Vol.(90), pages 1636-1642, 1997.

7. Hammond K. J. Case-Based Planning: Viewing Planning asmadfy Task. San Diego, CA:
Academic Press, 1989.

8. Neha Sugandh, Santiago Ontanon and Ashwin Ram. On-Lise-Based Plan Adaptation
for Real-Time Strategy Games. AAAI, 702-707, 2008.

9. Vithal Kuchibatla and Hector Munoz-Avila. An Analysis @nansformational Analogy: Gen-
eral Framework and Complexity. ECCBR, 2006.

10. Javier Bajo, Juan Manuel Corchado and Sara Rodriguetligent Guidance and Sugges-
tions Using Case-Based Planning. ICCBR, 2007.

11. Tomas de la Rosa, Angel Garcia Olaya and Daniel BorrggmdJCases Utility for Heuristic
Planning Improvement. ICCBR, 2007.

12. Marek Petrik and Shlomo Zilberstein. Learning Heuigtiinctions Through Approximate
Linear Programming. ICAPS, 2008.

13. Tomas de la Rosa, Sergio Jimenez and Daniel BorrajonlrgpRelational Decision Trees
for Guiding Heuristic Planning. ICAPS, 2008.

14. Sungwook Yoon, Alan Fern and Robert Givan. Learning @bi€nowledge For Forward
Search Planning. JMLR, 9 (APR), 683-718, 2008.

15. Richard Fikes and Nils J. Nilsson. Strips: A new approtcthe application of theorem
proving to problem solving, Artificial Intelligence, 1882, 1971.

16. Qiang Yang. Intelligent Planning: A Decomposition ants&kaction Based Approach.
Berlin, Germany: Springer Verlag, 1997.

17. David Chapman. Planning for Conjunctive Goals. Ar#li¢htelligence 32: 333-377, 1987.

18. Wilkins, D. E. Recovering from Execution Errors in SIREbmputational Intelligence 1:
33-45, 1985.

19. Selman, B., Levesque. H. and Mitchell, D. Hard and Easyribitions of SAT Problems. In
Proc. of the 10th National Conference on Artificial Intedlitce, 440-446. San Jose, CA: AAAI
Press/MIT Press, July 1992.

20. Carbonell, J.G. Learning by analogy: formulating andegalizing plans from past experi-
ence. Machine Learning: An Artificial Intelligence AppréadR.S. Michalski, J. G. Carbonell,
and T. M. Mitchell (Eds.). Tioga, Palo Alto, California, 138

