
Multi-Agent Plan Recognition with
Partial Team Traces and Plan Libraries

Hankz Hankui Zhuo and Lei Li

Department of Computer Science,

Sun Yat-sen University, Guangzhou, China

{zhuohank,lnslilei}@mail.sysu.edu.cn

Abstract

Multi-Agent Plan Recognition (MAPR) seeks to
identify the dynamic team structures and team be-
haviors from the observed activity sequences (team
traces) of a set of intelligent agents, based on a
library of known team activity sequences (team
plans). Previous MAPR systems require that team
traces and team plans are fully observed. In this
paper we relax this constraint, i.e., team traces and
team plans are allowed to be partial. This is an im-
portant task in applying MAPR to real-world do-
mains, since in many applications it is often diffi-
cult to collect full team traces or team plans due
to environment limitations, e.g., military operation.
This is also a hard problem since the information
available is limited. We propose a novel approach
to recognizing team plans from partial team traces
and team plans. We encode the MAPR problem as
a satisfaction problem and solve the problem using
a state-of-the-art weighted MAX-SAT solver. We
empirically show that our algorithm is both effec-
tive and efficient.

1 Introduction

Multi-Agent Plan Recognition (MAPR) explores an explana-
tion of the observed team trace, i.e., activity sequences of a
set of agents, by identifying the dynamic team structures and
team behaviors of agents based on a library of team plans. It
has important applications in analyzing data from automated
monitoring, surveillance and intelligence analysis in general
[Banerjee et al., 2010]. It is also a difficult task since an ob-
served team trace is often composed of many possible team
plans in the library, and team-mates may dynamically change
in the observing process.

There have been many techniques designed to automati-
cally recognize team plans given an observed team trace as
input. For instance, Avrahami-Zilberbrand and Kaminkaa
presented a Dynamic Hierarchical Group Model (DHGM),
which indicated the connection between agents, to track
the dynamically changed structures of groups of agents
[Avrahami-Zilberbrand and Kaminka, 2007]; Sukthankar and
Sycara proposed another recognizing algorithm that encoded
the dynamic team membership to prune the size of the plan

library, assuming that agents in the same team execute a com-
mon activity [Sukthankar and Sycara, 2008]; Banerjee et al.
proposed to formalize MAPR with a new model, revealing
the distinction between the hardness of single and multi-agent
plan recognition, and solve MAPR problems in the model us-
ing a first-cut approach, provided that a fully observed team
trace and a library of full team plans were given as input
[Banerjee et al., 2010]; etc.

Despite the success of previous approaches, they either as-
sume that agents in the same team can only execute a common
activity, i.e., coordinated activities of agents are not allowed
in a team, or require that the team trace and team plans are
complete, i.e., missing values (activities that are missing) are
not allowed. In many real-world applications, however, it is
often difficult to observe full team traces or collect full team
plans due to environment or resource limitations. For exam-
ple, in military operation, it may be difficult to observe every
activity of team-mates, since team-mates sometimes need to
hide when their enemies are attacking. As another example,
in team work of a company, there may be no sufficient sen-
sors to be set in each possible place to observe each activity of
team-mates. Thus, it is important to design a novel approach
to solving the problem that team traces and team plans are not
fully observed.

In this paper, we seek to develop a novel algorithm frame-
work to recognize multi-agent plans provided there are miss-
ing values in team traces and team plans. We call our algo-
rithm MARS, which stands for Multi-Agent plan Recognition
System. MARS first builds a set of candidate occurrences,
i.e., a possible case that a team plan occurs in the team trace.
After that, it generates sets of soft constraints and hard con-
straints based on candidate occurrences. Finally, it solves all
these constraints using a state-of-the-art weighted MAX-SAT
solver, such as MaxSatz [LI et al., 2009], and converts the
solving result to the solution of our MAPR problem.

We organize the paper as follows. We first introduce the re-
lated work in the next section, and then give the formulation
of our MAPR problem. After that, we present our MARS al-
gorithm and discuss properties of MARS. Finally, we evaluate
MARS in the experiment section and conclude the paper.

2 Related work

The plan recognition problem has been addressed by many
algorithms, e.g., Kautz proposed an approach to recognize

484

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

plans based on parsing view actions as sequences of subac-
tions and essentially model this knowledge as a context-free
rule in an “action grammar” [Kautz and Allen, 1986]; Bui
et al. presented approaches to probabilistic plan recognition
problems [Bui, 2003; Geib and Goldman, 2009]; instead of
using a library of plans, Ramrez and Geffner proposed an ap-
proach to solving the plan recognition problem using slightly
modified planning algorithms [Ramrez and Geffner, 2009];
etc. Despite the success of the above systems, they all focus
on single agent plan recognition.

For multi-agent plan recognition, Sukthankar et al. pre-
sented an approach for multi-agent plan recognition that
leveraged several types of agent resource dependencies and
temporal ordering constraints in the plan library to prune the
size of the plan library considered for each observation trace
[Sukthankar and Sycara, 2008]. Avrahami-Zilberbrand and
Kaminka preferred a library of single agent plans to team
plans, but identified dynamic teams based on the assumption
that all agents in a team executing the same plan under the
temporal constraints of that plan [Avrahami-Zilberbrand and
Kaminka, 2007]. The constraint on activities of the agents
that can form a team can be severely limiting when team-
mates can execute coordinated but different behaviors.

Instead of using the assumption that agents in the same
team should execute a common activity, Sadilek and Kautz
provided a unified framework to model and recognize activ-
ities that involved multiple related individuals playing a va-
riety of roles [Sadilek and Kautz, 2010]; Banerjee et al. for-
malized multi-agent plan recognition using a basic model that
explicated the cost of abduction in single agent plan recogni-
tion by “flatting” or decompressing the plan library [Baner-
jee et al., 2010]. In these systems, although coordinated ac-
tivities can be recognized, they either assume there is a set
of real-world GPS data available, or assume that team traces
and team plans can be fully observed. In this paper, we allow
that: (1) agents can execute coordinated different activities in
a team, (2) team traces and team plans can be partial, and (3)
GPS data is not needed.

3 Problem Definition

Considering a set of agents A = {α1, α2, . . . , αn}, a library
of team plans P of agents A is defined as a set of matrices.
Specifically, each team plan p ∈ P (p = [pij]) is an r × c
matrix, where 0 < r ≤ T , 1 < c ≤ n, and T is the number
of total time steps. pij is an activity that is expected to be
executed at time i by agent j, where i = {1, 2, . . . , c} and
j = {1, 2, . . . , r}. The value of each team plan p is associated
with an utility function μ(p).

An observed team trace O executed by agentsA is a matrix
O = [otj]. otj is the observed activity executed by agent j at
time step t, where 0 < t ≤ T and 0 < j ≤ n. A team trace O
is partial, if some elements in O are empty (denoted by null),
i.e., there are missing values in O. We define occurrence (we
slightly revise the original definition given by [Banerjee et al.,
2010]) as follows:
Definition 1 (Occurrence): A team plan (sub-matrix) p =
[pij]r×c is said to occur in a matrix O if r contiguous rows
(t1, . . . , tr, ti = ti−1 + 1), and c columns (say k1, . . . , kc, a

������� ���� p1��� �� 	
�������p2��� �� �
�������p ��� 	� �
��
�����������������	��p ��� �� �
�������p ��� �� �
�

t � � 	

�

�

	

a d null a

a b c null

null null c e

b e b null

������ ������������

e a

������ �����������������������

null null

a c

b b

a d

b b

b c

a null

Figure 1: An example of our recognition problem.

c-selection in any order from n agent indices) can be found
in O such that

otikj
= null ∨ pij = null ∨ pij = otikj

,

where i = 1, . . . , r, j = 1, . . . , c, and otikj
is the observed

activity of row ti and column kj in O.
We denote an occurrence by (t1, p, 〈αk1

, αk2
, . . . , αkc

〉),
where t1 is the start position of the occurrence in O, p is a
team plan id, 〈αk1

, αk2
, . . . , αkc

〉 is the agent sequence as is
described in definition 1.

Our multi-agent plan recognition problem can be defined
by: given as input a team trace and a library of team plans,
both of which may have missing values, our algorithm out-
puts a set of occurrences Csol that satisfies the following con-
ditions C1-C3:

C1: All occurrences in Csol occur in the team trace.

C2: For each activity oij in O, oij occurs in exactly one oc-

currence in Csol.

C3: The total utility of Csol is optimal, i.e.,
∑

p∈Csol μ(p) is

the maximal utility that can be obtained.

We show an example of our recognition problem in Figure
1. In the team trace, α1, α2, α3, and α4 are agents. t is a
time step ((1 ≤ t ≤ 4)). a, b, c, d, and e are activities. null
indicates the activity that is missing. p1, p2, p3, and p4 are
four team plans that compose a library. In the output, there
are five occurrences that exactly cover the inputted team trace.

4 Our MARS algorithm

An overview of our MARS algorithm is shown in algorithm 1.
We will present each step of Algorithm 1 in detail in Sections
4.1-4.4.

4.1 Creating candidate occurrences

In step 1 of Algorithm 1, we first create a set of candidate oc-
currences, denoted by Ccand, by scanning all the team plans
in P . Each candidate occurrence c ∈ Ccand is probably an oc-
currence that composes the final solution to the MAPR prob-
lem, i.e., c ∈ Csol probably holds. We call a candidate oc-
currence c a solution occurrence if c ∈ Csol. We describe the
creating process in Algorithm 2.

485

Algorithm 1 An overview of our MARS algorithm

input: a library of team plans P and a team trace O.
outputs: a set of occurrences Csol that cover O.

1: create a set of candidate occurrences in O:
Ccand=create-candidate(P , O);

2: generate a set of soft constraints SC;
3: generate a set of hard constraints HC;
4: solving all the constraints using a weighted MAX-SAT

solver;
5: convert the solving result to Csol;
6: return Csol;

Algorithm 2 Ccand=create candidate(P , O)

input: a library of team plans P and a team trace O
output: a set of candidate occurrences Ccand

1: Ccand = ∅;
2: for t = 1 to T do
3: for each p ∈ P do
4: for each c-selection 〈αk1

, αk2
, . . . , αkc

〉, such that
p occurs in O starting at position t in O do

5: Ccand = {(t, p, 〈αk1
, αk2

, . . . , αkc
〉)} ∪ Ccand;

6: end for
7: end for
8: end for
9: return Ccand;

Table 1: An example of candidate occurrences Ccand that can
be created by Algorithm 2.

Ccand={(1, p2, 〈α4, α2〉),(1, p3, 〈α3, α1〉),
(1, p3, 〈α3, α4〉), (2, p1, 〈α1, α3〉),(2, p3, 〈α4, α1〉),
(2, p4, 〈α2, α3〉), (3, p3, 〈α1, α2〉),(3, p3, 〈α2, α1〉),
(3, p3, 〈α4, α1〉), (3, p3, 〈α4, α2〉),(4, p3, 〈α2, α4〉)}

In step 4 of Algorithm 2, 〈αk1
, αk2

, . . . , αkc
〉 is a c-

selection in any order from n agent indices (c is the number
of columns in p), as is described in definition 1. Note that
since there may be different c-selections such that p occurs
in O (because there may be different columns with the same
values), we need to search all the possible c-selections to cre-
ate all possible candidate occurrences. For instance, in Fig-
ure 1, there are two possible c-selections 〈3, 1〉 and 〈3, 4〉 (or
equivalently, 〈α3, α1〉 and 〈α3, α4〉) for p3 starting at t = 1
position in O. As a result, we can build all the candidate oc-
currences Ccand, as is shown in Table 1, with inputs given by
Figure 1:

4.2 Generate Soft Constraints

For each candidate occurrence ci ∈ Ccand, we conjecture that
it could be possibly one of the final set of solution occur-
rences Csol. In other words, for each candidate occurrence
ci, the following constraint could possibly hold: ci ∈ Csol.
We associate this constraint with weight wi to specify that it
is not 100% to be true. We call this kind of constraints soft
constraints (denoted by SC). We calculate weight wi of can-

didate occurrence ci with the following equation:

wi = λ(ci)× μ(pi), (1)

where the first term λ(ci) is the observing rate (defined later),
describing the degree of the confidence that candidate occur-
rence ci happens. Generally, we assume the more activities
being observed, the more confidence we have on the happen-
ing of ci. The second term μ(pi) is the utility of pi that needs
to be considered as an impact factor in order to maximize the
total utility. Note that pi is the team plan id in ci. The ob-
serving rate λ(ci) is defined by

λ(ci) =
2|pi| − |{nullpi

}| − |{nullO}|

2|pi|
,

where |pi| is the total number of actions of team plan pi,
|{nullO}| is the number of null in the scope of O restricted
by ci, and |{nullpi

}| is the number of null in pi.

For example, consider the occurrence (2, p1, 〈α1, α3〉) that
is shown in Figure 1. The number of p1 is 6, i.e., |p1| = 6.
The number of null is 1 corresponding to the occurrence in
the observed team trace, i.e., |{nullO}| = 1. The number of
null in p1 is 2, i.e., |{nullp1

}| = 2 Thus, we have λ(p1) =
2×6−2−1

2×6
= 3

4
.

It is easy to find that λ(ci) is equivalent to zero when
|{null}| = |pi|, resulting in wi = 0. This suggests that the
occurrence ci cannot be a solution occurrence if none of its
actions are observed. This is not true according to our MAPR
problem definition. Thus, we relax this constraint by revising
λ(ci) as follows

λ(ci) =
2|pi| − |{nullpi

}| − |{nullO}|+ 1

2|pi|+ 1
, (2)

where “1” can be interpreted as there is a virtual action (that
makes the occurrence ci happen) which can always be ob-
served.

4.3 Generating Hard Constraints

According to condition C2, each element of O should be cov-
ered by exactly one solution occurrence. In this step, we seek
to build hard constraints to satisfy this condition. To do this,
we first collect an occurrence subset of Ccand for each ele-
ment oij ∈ O, such that oij is covered by all the occurrences
in the subset. We use Sij to denote this subset, and S to de-
note the collection of all the subsets with respect to different
elements of O, i.e., S = {Sij |oij ∈ O}. The detailed descrip-
tion can be found from Algorithm 3. Note that the collection
S has different elements, which is guaranteed by the union
operator in step 10 of Algorithm 3.

With S, we generate hard constraints to guarantee condi-
tion C2 as follows. For each subset S ∈ S, there is only one
occurrence c ∈ S that belongs to Csol, i.e., the proposition
variable “c ∈ Csol” is assigned to be true. Formally, we have
the following constraints

∨

c∈S

(c ∈ Csol ∧
∧

c′∈S−{c}

c′
∈ Csol),

486

Algorithm 3 Build a collection of subsets of candidate occur-
rences in Ccand

input: The team trace O and candidate occurrences Ccand.
output: A collection S of subsets of occurrences in Ccand.

1: S = ∅;
2: for each element oij ∈ O do
3: S = ∅;
4: for each candidate occurrence c in Ccand do
5: if oij is covered by c then
6: S = S ∪ {c};
7: end if
8: end for
9: if S
= ∅ then

10: S = S ∪ {S};
11: end if
12: end for
13: return S;

where the term
∧

c′∈S−{c} c
′
∈ Csol indicates all occurrences,

which are different from c, do not belong to Csol. Further-
more, we have the following constraints with respect to S,

∧

S∈S

{
∨

c∈S

(c ∈ Csol ∧
∧

c′∈S−{c}

c′
∈ Csol)}. (3)

We set the weights of this kind of constraints, denoted by
HC, with “high” enough values to guarantee these con-
straints are hard. We empirically choose the sum of the
weights of soft constraints as this “high” value.

4.4 Solving constraints

With steps 2 and 3 of Algorithm 1, we have two kinds of
weighted constraints, i.e., soft constraints SC and hard con-
straints HC. In this step, we put SC and HC together and
solve them using a weighted MAX-SAT solver. In the ex-
periment, we would like to test two different cases using or
not using the observing rate function λ(ci). We introduce a
new parameter ρ ∈ {0, 1} and revise Equation (1) to a new
equation as shown below.

wi = λρ(ci)× μ(pi). (4)

If ρ is 1, Equation (4) is reduced to Equation (1); otherwise,
Equation (4) is reduced to wi = μ(pi). We will evaluate that
λ(ci) is helpful in improving the recognizing accuracy in the
experiment section.

The solving result of the weighted MAX-SAT solver is
a set of assignments (true or false) to proposition variables
{ci ∈ Csol|for all ci ∈ Ccand}. If a proposition variable
“ci ∈ Csol” is assigned to be true, ci is one of the solution oc-
currences outputted by MARS; otherwise, ci is not outputted
by MARS.

4.5 Discussion

In this section, we discuss the properties of our MARS

algorithm related to completeness and soundness.
Property 1 (Completeness): The completeness of MARS
depends only on the completeness of the weighted MAX-SAT
solver, i.e., given an MAPR problem that is solvable, MARS

can output a solution to this problem if the weighted MAX-
SAT solver is complete.
The sketch of the proof can be presented as follows. For each
solvable MAPR problem, we can encode the problem with
constraints SC and HC in polynomial time by steps 1-3 of
Algorithm 1. Furthermore, if the weighted MAX-SAT solver
is complete, it can successfully solve these constraints (by
step 4) and output a solving result, which can be converted
to the solution to the MAPR problem in polynomial time (by
step 5). �
Property 2 (Soundness): Given an MAPR problem, if the
ρ is set to be 0 in Equation (4), the output of MARS is the
solution to the MAPR problem.
The sketch of the proof can be described as follows. From
step 1 of Algorithm 1, we can see that the candidate oc-
currences Ccand, covered by the observed team trace, are
all from the library of team plans, which satisfies the first
condition C1 in Section 3. From step 2, if ρ is set to be 0, the
weights of soft constraints are determined by the utility func-
tion μ. Furthermore, the solution outputted by the weighted
MAX-SAT solver maximizes the total weights (which is
done by step 4), which suggests the second condition C3 is
also satisfied. Finally, the third condition C3 is satisfied by
the hard constraints established by step 3. Thus, the output
of MARS satisfies C1-C3, which means it is the solution to
the MAPR problem. �

5 Experiment

5.1 Dataset and Criterion

We follow the experimental method prescribed by [Baner-
jee et al., 2010] to generate a set of MAPR problems. For
generating an MAPR problem, we first generate a random
team trace with dimensions 100× 50, i.e., 100 time steps and
50 agents. Each element of the team trace belongs to a set
of activities A with |A| = 20. We randomly partition the
team trace into a set of team plans which initiate the mem-
bers of the library of team plans P . This guarantees there
is a solution to the MAPR problem. We generate a set of
such MAPR problems R, where |R| = 3000. After that we
add M random team plans to library P of each MAPR prob-
lem to enlarge the library. We will test different values of M
from {20, 40, 60, 80} to vary the size of the library. We will
also test different percentages ξ of random missing values
from {0%, 10%, 20%, 30%, 40%, 50%} for each team trace
and team plan. Note that “ξ = 10%” indicates that there are
randomly 10% of values that are missing in each team trace
and team plan, likewise for other ξ. To define the utility func-
tion of team plans, we associate each team plan with a random
utility value.

To evaluate MARS, we define a recognizing accuracy
Acc(ξ,M) as follows. For each MAPR problem R ∈ R with
a specific M value and ξ = 0% (without any missing value),
we solve the problem using MARS and denote the solution by
C. After that, we revise the problem R by setting ξ with an-
other percentage to get a new problem R′. We solve R′ and
get a solution C′. If C′ is the same as C, the function θR(ξ,M)
with respect to R is set to be 1. Otherwise, θR(ξ,M) is set to

487

be 0. The recognizing accuracy with respect to ξ and M can
be defined by

Acc(ξ,M) =

∑
R∈R θR(ξ,M)

|R|
. (5)

As a special case, Acc(ξ,M) = 1 when ξ is 0%.

5.2 Experimental Results

We would like to test the following four aspects of MARS: (1)
the recognizing accuracy with respect to different percentages
of missing values; (2) the recognizing accuracy with respect
to different numbers of randomly added team plans (referred
to as “team plans” for simplicity); (3) the number of gener-
ated clauses with respect to each percentage; (4) the running
time with respect to different percentages of missing values.
We present the experiment results in these aspects below.

Varying the percentage of missing values

0% 10% 20% 30% 40% 50%
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

percentage of missing values

A
cc

ρ=0→

← ρ=1

Figure 2: The recognizing accuracy with respect to different
percentages of missing values (M is set to be 80)

To evaluate that MARS functions well in missing-value
problems, we set the number of team plans M to be
80, and vary the percentage of missing values ξ from
{0%, 10%, 20%, 30%, 40%, 50%} to see the recognizing ac-
curacy Acc defined by Equation (5). For each ξ, we run
five random selections to calculate an average accuracy. The
results are shown in Figure 2, where the curve denoted by
“ρ = 1 indicates the result obtained by setting ρ = 1 in Equa-
tion (4), likewise for the curve denoted by “ρ = 0”.

From Figure 2, we can see that the accuracy Acc generally
decreases when the percentage increases, no matter whether
ρ is 1 or not. This is expected, because missing values may
provide information that may be exploited to find accurate
occurrences. The more values are missing, the more informa-
tion is lost. Considering the difference between two curves,
we can find that the accuracy is generally larger when ρ = 1
than that when ρ = 0. The results are statistically significant;
we performed the Student’s t-test and the result is 0.0482,
which indicates the two curves are significantly different at
the 5% significance level. This suggests that the observing
rate function λ is helpful in improving the accuracy. We can
also find that the difference becomes larger when more values
are missing, which indicates that λ is more significant when
more values are missing. By observation, MARS generally

functions well in handling missing values when there are less
than 30% of missing values, where there is no less than the
accuracy of about 0.9 by setting ρ = 1.

Varying the number of team plans

We now analyze the relation between the recognizing accu-
racy and the size of team plans. We set the percentage ξ to be
30% and vary the size of team plans M to see the change of
accuracies. We show the results in Figure 3. From the curves,
we can see that the accuracy is generally reduced with the
number of team plans increasing. This is consistent with our
intuition, since more “uncertain” information is introduced
when more team plans are added (each of which has 30% of
missing values that introduce uncertain information).

We also observe that the curve denoted by “ρ = 1” is gen-
erally better than the one denoted by “ρ = 0”, and the differ-
ence between two curves becomes sharp as the size of team
plans increasing. This indicates that MARS that exploits the
observing rate function (corresponding to “ρ = 1”), performs
better than the one that does not exploit it, especially when
the size of team plans is large.

10 20 30 40 50 60 70 80 90
0.75

0.8

0.85

0.9

0.95

1

1.05

number of team plans

A
cc
ρ=0→

← ρ=1

Figure 3: The recognizing accuracy with respect to different
numbers of team plans (ξ is set to be 30%)

From Figures 2 and 3, we can conclude that in order to
improve the recognizing accuracy, we should better exploit
the observing rate function to control weights of constraints
as is given in Equation (1), especially when the percentage of
missing values and the size of team plans are large.

The generated clauses

We would like to verify that the generated constraints SC and
HC would not increase too fast when the percentage of miss-
ing values increases. We record the total number of clauses,
which correspond to SC and HC, with respect to each per-
centage of missing values. Note that the clauses obtained
from SC and HC are disjunctions of propositions that can be
solved directly by a weighted MAX-SAT solver. The results
are shown in Table 2, where the first column is the number
of team plans, and the other columns are numbers of clauses
corresponding to each percentage of missing values. For in-
stance, in the second row and the last column, “392” is the
number of clauses that are generated from 20 team plans with
50% of missing values. Note that the numbers of clauses in
Table 2 are average results over 3000 MAPR problems. We
observe that we can fit the performance curve with a polyno-
mial of order 2. As an example, we provide the polynomial

488

Table 2: Average numbers of clauses with respect to different
percentages of missing values

team plans
percentage of missing values

0% 10% 20% 30% 40% 50%
20 181 233 269 282 338 392
40 225 253 341 482 619 773
60 536 611 657 718 821 1059
80 692 785 843 929 983 1123

for fitting the numbers of clauses of the last row in Table 2,
which is y = 0.0391x2 + 6.1446x + 703.0357, where x is
the number of percentage points (e.g., x = 50 in the last col-
umn of Table 2) and y is the number of clauses. This suggests
that MARS can handle MAPR problems with missing values
well since the number of clauses would not increase fast when
missing values increase. Note that clauses increase fast may
make the weighted MAX-SAT solver difficult or even fail to
solve. Likewise, we can also verify that the number of clauses
would not increase fast when the size of team plans increases.

The running time

To test the running time of MARS, we set the number of team
plans M to be 20, 40, 60 and 80 respectively, and test MARS
with respect to different percentages of missing values. The
testing results are shown in Figure 4. By comparing Figures
(I)-(VI), we can find that, generally, the larger the size of team
plans is, the higher the running time is. This is because there
are more constraints generated when the size of team plans
becomes larger. We also observe that the running time of
MARS increases polynomially with the percentage of missing
values increasing. To verify our claim, we use the relationship
between percentages of missing values and the CPU time to
estimate a function that could best fit these points. We find
that we can fit the performance curve with a polynomial of
order 2 or order 3. We provide the polynomial for fitting cpu
time of (II) in Figure 4, i.e., 0.1475x2 + 8.3593x+ 76.6429,
where x is the number of percentage points.

0% 10% 20% 30% 40% 50%
0

200

400

600

800

1000

1200

cp
u

tim
e

(s
ec

on
ds

)

(I) 20 team plans

percentage of missing values
0% 10% 20% 30% 40% 50%

0

200

400

600

800

1000

1200

cp
u

tim
e

(s
ec

on
ds

)

(II) 40 team plans

percentage of missing values

0% 10% 20% 30% 40% 50%
0

200

400

600

800

1000

1200

cp
u

tim
e

(s
ec

on
ds

)

(III) 60 team plans

percentage of missing values
0% 10% 20% 30% 40% 50%

0

200

400

600

800

1000

1200

cp
u

tim
e

(s
ec

on
ds

)

(VI) 80 team plans

percentage of missing values

Figure 4: CPU time with respect to different percentages of
missing values.

6 Conclusion

In this paper, we have presented a novel algorithm MARS to
recognize multi-agent plans. Given a team trace and a library
of team plans, MARS builds a set of soft/hard constraints, and
solves them using a weighted MAX-SAT solver. The solution
obtained is a set of occurrences that cover each element in the
team trace exactly once. We observed the following conclu-
sions from our empirical evaluation: (1) Using the observing
rate function can help improve the recognizing accuracy, es-
pecially when the percentage of missing values and the size of
team plans are large, (2) The recognizing accuracy decreases
with the missing values or the size of the library increasing,
and (3) The running time of our algorithm increases polyno-
mially with the percentage of missing values increasing.

Acknowledgement

Hankz Hankui Zhuo thanks China Postdoctoral Science
Foundation funded project(Grant No.20100480806) and Na-
tional Natural Science Foundation of China (61033010)
for suport of this research. Lei Li thanks Macao FDCT
013/2010/A for support of this research.

References

[Avrahami-Zilberbrand and Kaminka, 2007] Dorit
Avrahami-Zilberbrand and Gal A. Kaminka. To-
wards dynamic tracking of multi-agents teams: An initial
report. In Proceedings of the AAAI Workshop on Plan,
Activity, and Intent Recognition (PAIR 2007), 2007.

[Banerjee et al., 2010] Bikramjit Banerjee, Landon Krae-
mer, and Jeremy Lyle. Multi-agent plan recognition: for-
malization and algorithms. In Proceedings of AAAI, 2010.

[Bui, 2003] Hung H. Bui. A general model for online prob-
abilistic plan recognition. In Proceedings of IJCAI, 2003.

[Geib and Goldman, 2009] Christopher W. Geib and
Robert P. Goldman. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence,
173(11):1101–1132, 2009.

[Kautz and Allen, 1986] Henry A. Kautz and James F. Allen.
Generalized plan recognition. In Proceedings of AAAI,
1986.

[LI et al., 2009] Chu Min LI, Felip Manya, Nouredine Mo-
hamedou, and Jordi Planes. Exploiting cycle structures in
Max-SAT. In In proceedings of 12th international confer-
ence on the Theory and Applications of Satisfiability Test-
ing (SAT-09), pages 467–480, 2009.

[Ramrez and Geffner, 2009] Miquel Ramrez and Hector
Geffner. Plan recognition as planning. In Proceedings of
IJCAI, 2009.

[Sadilek and Kautz, 2010] Adam Sadilek and Henry Kautz.
Recognizing multi-agent activities from gps data. In Pro-
ceedings of AAAI, 2010.

[Sukthankar and Sycara, 2008] Gita Sukthankar and Katia
Sycara. Hypothesis pruning and ranking for large plan
recognition problems. In Proceedings of AAAI, 2008.

489

