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Abstract

Plan recognition aims to recognize target plans given ob-
served actions with history plan libraries or domain models
in hand. Despite of the success of previous plan recognition
approaches, they all neglect the impact of human preferences
on plans. For example, a kid in a shopping mall might pre-
fer to “executing” a plan of playing in water park, while an
adult might prefer to “executing” a plan of having a cup of
coffee. It could be helpful for improving the plan recognition
accuracy to consider human preferences on plans. We assume
there are historical rating scores on a subset of plans given by
humans, and action sequences observed on humans. We esti-
mate unknown rating scores based on rating scores in hand us-
ing an off-the-shelf collaborative filtering approach. We then
discover plans to best explain the estimated rating scores and
observed actions using a skip-gram based approach. In the
experiment, we evaluate our approach in three planning do-
mains to demonstrate its effectiveness.

Introduction
Plan recognition aims to look for target plans to best ex-
plain the observed actions based on plan libraries and/or do-
main models (Kautz and Allen 1986; Ramı́rez and Geffner
2009a; Zhuo, Yang, and Kambhampati 2012). Computer-
aided cooperative work scenarios become increasingly pop-
ular, human-in-the-loop decision support has become a
critical challenge (Cohen et al. 2015; Dong et al. 2004;
Manikonda et al. 2014). An important aspect of such a
support is recognizing what plans the human in the loop
is making. There have been large amount of works on
plan recognition. For example, Kautz and Allen proposed
an approach to recognizing plans based on parsing ob-
served actions as sequences of subactions and essentially
model this knowledge as a context-free rule in an “action
grammar” (Kautz and Allen 1986); Bui et al. (Bui 2003;
Geib and Goldman 2009) presented approaches to proba-
bilistic plan recognition problems; Kabanza and Filion (Ka-
banza et al. 2013) proposed an anytime plan recognition al-
gorithm to reduce the number of generated plan execution
models based on weighted model counting; just to name a
few.
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Despite the success of previous approaches, they all ig-
nore the preferences humans have on the plans they aim to
execute. In many real-world applications, humans often have
different preferences on plans. For example, in travel plan-
ning systems, such as triphobo1, which provides personal-
ized trip plans to 14000 cities, travelers would like to have
a trip from Hong Kong to Phoenix. Some travelers may pre-
fer to stay at Los Angeles to visit Disney Land before going
to Phoenix, while others may prefer to go directly from Los
Angeles to Phoenix. Suppose we observe two actions that a
traveler “flies from Hong Kong to Los Angeles” and “flies
from Los Angeles to Phoenix”. We do not have any clues
telling us the traveler is executing the former plan or the lat-
ter. As another example, a kid in a shopping mall might pre-
fer to “executing” a plan of playing in water park, while an
adult might prefer to “executing” a plan of having a cup of
coffee.

In this paper, we aim to consider human preferences when
recognizing plans with observed actions. We assume that hu-
man preferences are described by a matrix of rating scores,
suggesting that human provides a rating score on a plan af-
ter he executes the plan to express his interest in the plan. It
is feasible to collect rating scores in real world applications.
For example, in travel planning systems, they collect rating
scores after travelers finish their trips by asking the travelers’
feedbacks. We also assume we have a set of observations of
action sequences. It is also possible in real world applica-
tions. For example, travel systems can “observe” some ac-
tions of travelers by communicating with travelers via mo-
bile phone apps.

With rating scores and observed action sequences as in-
put, we propose a novel plan recognition approach called
HARE, which stands for Human-Aware plan REcognition.
In HARE, we first estimate the possible preferences (in the
form of rating scores) humans may have on plans that they
did not execute before according to “relations” to others’ rat-
ing scores. We then learn vector representations of actions
to calculate the possibility of the target plans that cover the
observed action sequences. After that we compute the final
target plans that best explain the estimated rating scores and
observed action sequences.

In the remainder of the paper we organize the paper as

1https://www.triphobo.com



follows. We first review previous work on plan recogni-
tion problems. After that we give a formal definition of our
human-aware plan recognition problem and present the de-
tails of our HARE approach step by step. We then evaluate
our HARE approach by comparing to previous approaches
refined to allow human ratings as input to exhibit the ef-
fectiveness of our HARE approach. Finally we conclude the
paper with future work.

Related work
Kautz and Allen proposed to recognize plans based on pars-
ing observed actions as sequences of subactions and essen-
tially model this knowledge as a context-free rule in an “ac-
tion grammar” (Kautz and Allen 1986). All actions, plans
are uniformly referred to as goals, and a recognizer’s knowl-
edge is represented by a set of first-order statements called
event hierarchy encoded in first-order logic, which defines
abstraction, decomposition and functional relationships be-
tween types of events. Kabanza and Filion (Kabanza et al.
2013) proposed an anytime plan recognition algorithm to re-
duce the number of generated plan execution models based
on weighted model counting. These approaches are, how-
ever, difficult to represent uncertainty. They offer no mech-
anism for preferring one consistent approach to another and
incapable of deciding whether one particular plan is more
likely than another, as long as both of them can be consis-
tent enough to explain the actions observed.

Instead of using a library of plans, Ramirez and Geffner
(Ramirez and Geffner 2009b) proposed an approach to solv-
ing the plan recognition problem using slightly modified
planning algorithms, assuming the action models were given
as input. Except previous work (Kautz and Allen 1986;
Bui 2003; Geib and Goldman 2009; Ramirez and Geffner
2009b) on the plan recognition problem presented in the in-
troduction section, Note that action models can be created by
experts or learnt by previous systems, such as ARMS (Yang,
Wu, and Jiang 2007) and LAMP (Zhuo et al. 2010), Amir and
Gal addressed a plan recognition approach to recognizing
student behaviors using virtual science laboratories (Amir
and Gal 2011). Ramirez and Geffner exploited off-the-shelf
classical planners to recognize probabilistic plans (Ramirez
and Geffner 2010).

Early work on human-in-the-loop planning scenarios
in automated planning went under the name of “mixed-
initiative planning” (e.g. (Ferguson, Allen, and Miller
1996)). Different from our work, that work was that the hu-
mans in the loop were helping the automated planner (with
a complete action model) navigate its search space of plans
more efficiently. In contrast, we are interested in planning
technology that helping humans develop plans, even in the
absence of complete formal models of the planning domain.
While some work in web-service composition (c.f. (Dong et
al. 2004)) did focus on this type of planning support, they
were hobbled by being limited to simple input/output type
comparison. In contrast, we believe that HARE learns and
uses a model that captures more of the structure of the plan-
ning domain (while still not insisting on complete action
models). While HARE focuses on exploiting human prefer-
ences and learning models from plan corpora, some recent

work looked at using crowdsourcing to acquire domain mod-
els. For example, Lasecki et al. (Lasecki et al. 2013) intro-
duce Legion:AR, which combines the benefits of automatic
and human activity labeling for robust and deployable activ-
ity recognition. By engaging a group of people, Legion:AR
is able to label activities as they occur more reliably than
a single person can, especially in complex domains with
multiple actors performing activities quickly. Such crowd-
sourcing methods can complement the plan-corpus based
approach proposed in HARE.

Problem Definition
A matrix of rating scores is denoted by R = [r

ui

], where r
ui

is a rating score given by user u on plan p
i

. A rating score
is either an integer from {1, 2, 3, 4, 5}, or a symbol “?” indi-
cating the score is unknown (to be estimated). A set of users
is denoted by U , a set of plans is denoted by L called a plan
library, a set of actions is denoted by A. A plan p is com-
posed of an action sequence ha1, a2, . . . , ani, where a

i

2 A
(1  i  n). A set of observations O = {Os

u

} specifies
the actions observed by monitors such as “sensors” or “log
recorders”, where Os

u

is the sth action sequence observed
on u. Note that for the simplicity of specification we con-
sider the observations as actions directly, i.e., each observed
action in Os

u

is in A. In real world applications, Os

u

can be
replaced by sensor signals which can further be projected to
actions.

Our problem can be defined as follows. Given a ma-
trix of rating scores R = [r

ui

], and a set of observations
O = {Os

u

}, we aim to output a set of plans ˜P = {p} that
best explains O, where p 2 L. An example input of our
recognition problem in the blocks2 domain is shown in Fig-
ure 1, where Figure 1(a) is p1, p2, p3, p4, p5 are five plans
described in Figure1(c), Figure 1(b) is a set of observations
with respect to different humans u1, u2, u3, u4, u5. For ex-
ample, ”stack-B-A,stack-C-B” indicates an observed action
sequence on human u1; other sequences are omitted. An ex-
ample output of our approach, given the input shown in Fig-
ure 1, is p3, p1, p1, p3, p2 for u1, u2, u3, u4, u5, respectively.

Our HARE Algorithm
In this section we present our HARE algorithm in detail. An
overview of HARE is shown in Algorithm 1, where we first
learn vector representations of actions and plans (i.e., Steps
1 and 2 of Algorithm 1), and estimate the rating scores of
plans (i.e., Steps 3 and 4) and recognize plans based on the
estimated rating scores (i.e., Step 5).

Learning Representations of Actions and Plans
To search a plan that can best explain the observed actions,
we exploit a vector-representation approach to calculating
the probability of a plan given the observed actions (i.e.,
Step 1 of Algorithm 1). This approach takes into account the
“grammar” information behind all the plans, which has been
demonstrated effective in completing plans by (Tian, Zhuo,
and Kambhampati 2016). In the following we describe the

2http://www.cs.toronto.edu/aips2000/



?	 1	 4	 ?	 1	

?	 ?	 3	 3	 ?	

?	 4	 ?	 2	 ?	

?	 5	 ?	 ?	 3	

2	 ?	 2	 1	 ?	

p1        p2           p3       p4       p5      

u1 
 
u2 
 
u3 
 
u4 
 
u5 

p1: pickup-B, stack-B-A, pickup-D, stack-D-C 
p2: unstack-B-A, putdown-B, unstack-D-C, putdown-D 
p3: pickup-B, stack-B-A, pickup-C, stack-C-B, pickup-D, stack-D-C 
p4: unstack-D-C, putdown-D, unstack-C-B, putdown-C, unstack-B-A, putdown-B 
p5: pickup-A, stack-A-D, unstack-B-E, stack-B-A, unstack-C-F, stack-C-B 

u1: “stack-B-A, stack-C-B”; “…”; ... 
u2: “pickup-B, pickup-D”; “…”; … 
u3: “stack-B-A, pickup-D”; “…”; … 
u4: “stack-B-A, stack-C-B”; “…”; ... 
u5: “unstack-B-A, putdown-B”; “…”; … 

(a). rating scores R (b). observations O 

(c). plan library 

Figure 1: An example input of our human-aware plan recog-
nition problem

Algorithm 1 An overview of our HARE algorithm
input: Rating scores R, observations O.
output: Plans ˜P .

1: Learn vector representations w
i

of actions a
i

based on
the plan set P (specified in R).

2: Calculate vector representations of plans ˜V .
3: Estimate rating scores based on matrix factorization:

R ⇠ UV T and V ⇠ ˜V

where U is a matrix of user features, and V is a matrix
of plan features.

4: Calculate the estimated rating scores by R⇤
= UV T .

5: Calculate ˜P that best explains O based on R⇤ and vector
representations of actions w

i

.
6: return ˜P

detail of the learning procedure, which has been presented
in (Tian, Zhuo, and Kambhampati 2016) as well.

Since actions are denoted by a name strings, actions can
be viewed as words, and a plan can be viewed as a sentence.
Furthermore, the plan library L can be seen as a corpus,
and the set of all possible actions A is the vocabulary. We
thus can learn the vector representations for actions using
the Skip-gram model with hierarchical softmax, which has
been shown an efficient method for learning high-quality
vector representations of words from unstructured corpora
(Mikolov et al. 2013).

The objective of the Skip-gram model is to learn vector
representations for predicting the surrounding words in a
sentence or document. Given a corpus C, composed of a se-
quence of training words hw1, w2, . . . , wT

i, where T = |C|,
the Skip-gram model maximizes the average log probability

1

T

T

X

t=1

X

�cjc,j 6=0

log p(w
t+j

|w
t

) (1)

where c is the size of the training window or context.

The basic probability p(w
t+j

|w
t

) is defined by the hier-
archical softmax, which uses a binary tree representation
of the output layer with the K words as its leaves and for
each node, explicitly represents the relative probabilities of
its child nodes (Mikolov et al. 2013). For each leaf node,
there is an unique path from the root to the node, and this
path is used to estimate the probability of the word repre-
sented by the leaf node. There are no explicit output vector
representations for words. Instead, each inner node has an
output vector v0

n(w,j), and the probability of a word being
the output word is defined by

p(w
t+j

|w
t

) =

L(w
t+j

)�1
Y

i=1

n

�(I(n(w
t+j

, i+ 1) =

child(n(w
t+j

, i))) · v
n(w

t+j

,i) · vw
t

)

o

, (2)

where �(x) = 1/(1+exp(�x)). L(w) is the length from the
root to the word w in the binary tree, e.g., L(w) = 4 if there
are four nodes from the root to w. n(w, i) is the ith node
from the root to w, e.g., n(w, 1) = root and n(w,L(w)) =
w. child(n) is a fixed child (e.g., left child) of node n. v

n

is the vector representation of the inner node n. v
w

t

is the
input vector representation of word w

t

. The dimension of
vector representations is denoted by v

n

= D, which is a
preset constant. The identity function I(x) is 1 if x is true;
otherwise it is -1.

We can thus build vector representations of actions by
maximizing Equation (1) with corpora or plan libraries L as
input. We will exploit the vector representations to discover
the unknown plan ˜P in the next subsection.

With the vector representations of actions, we take a
straightforward way to calculate vector representations of
plans by computing an average over all of the action
representations. Specifically, vector representation ˜V

i

of
plan p

i

= hw1, w2, . . . , wL

i can be defined by ˜V
i

=

1
L

P

L

x=1 vwx

, where L is the length of plan p
i

, and v
w

x

is
the vector representation of action w

x

. As a result, the plan
library L can be represented by ˜V with dimension |L|⇥D,
where D is the dimension of vector representations of both
actions and plans.

Estimating Rating Scores
In Step 3 of Algorithm 1, we aim to estimate the rating
scores missing in the given rating score matrix R using ma-
trix factorization, which has been applied to recommender
systems. The objective function is defined by

min

U

i

,V

j

X

i,j

one(i, j){(r
i,j

� U
i

V T

j

)

2
+ �1||Vj

� ˜V
j

||2

+�2(||Ui

||2 + ||V
j

||2)}, (3)

where one(i, j) is 1 if r
i,j

6= “?

00, and 0 otherwise. �1 and
�2 are constants used to control the regularization. U

i

is a
feature vector characterizing ith user, and V

j

is a feature
vector characterizing jth plan, whose dimension is set to
be the same as ˜V

j

, i.e., |V
j

| = D. The first term of Equa-
tion (3) suggests R ⇠ UV T and the second term indicates



V ⇠ ˜V . Note that we assume that the resulting feature vec-
tor V should be close to ˜V learnt from the plan library.

We exploit a stochastic gradient algorithm to learn the pa-
rameters U and V , and calculate the estimated rating scores
by R⇤

= UV T , i.e., Step 4 of Algorithm 1.

Calculating the Recognized Plans
In this subsection we aim to build a model to discover plans
that can best explain both estimated rating scores and ob-
served actions. To consider the two factors, rating scores and
observed actions, we exploit a straightforward way by mul-
tiplying these two factors, indicating (1) the larger the rating
score is, the higher the possibility of the plan to be the target
plan is; (2) the larger the likeliness of the observed actions
being covered by the plan, the higher the possibility of the
plan to be the target plan is.

We define the objective function below:

G(Os

u

, p
i

,W, r⇤
ui

) = r⇤
ui

F (p
i

|Os

u

,W ), (4)

where Os

u

is the sth observed action sequence with respect
to user u, p

i

is a plan from the plan library, W = {w
i

}
is a set of vector representations of actions in A, and r⇤

ui

is the estimated rating scores on plan p
i

given by user u.
F (p

i

|Os

u

,W ) is defined by

F (p
i

|Os

u

,W ) =

I(p
i

, Os

u

){ 1
T

T

X

t=1

X

�cjc,j 6=0

log p(w
t+j

|w
t

)}, (5)

where I(p
i

, Os

u

) is L

|p
i

| if plan p
i

covers observed ac-
tion sequence Os

u

, i.e., there exists a subsequence of p
i

,
ha

k1ak2 . . . akL

i, such that Os

u

= ha
k1ak2 . . . akL

i, where L
is the length of actions in Os

u

and 1  k1 < k2 < . . . <
k
L

 |p
i

|; I(p
i

, Os

u

) is zero, otherwise. The intuition of
I(p

i

, Os

u

) is that the larger the ratio of actions in a plan is
observed, the larger likely is the plan to be the target one.

Algorithm 2 Calculating the final recognized plans
input: Rating scores R⇤

= [r⇤
ui

], observations O = {Os

u

}
output: Plans ˜P

1: ˜P = ;
2: for Each user u and each sth sequence of user u do
3: Calculate a plan p̃

u

that best explain Os

u

2 O:

p̃
u

= argmax

p

i

2P

G(Os

u

, p
i

,W, r⇤
ui

) (6)

4: ˜P =

˜P [ {p̃
u

}
5: end for
6: return ˜P

The framework of calculating the final recognized plans is
shown in Algorithm 2, where Os

u

is the sth observed action
sequence of user u.

Handling Cold Start Issue
In our human-aware plan recognition problem we assume
the plan library is finite and should be provided in advance

before doing collaborative filtering procedure (i.e., Step 3
of Algorithm 1). It is, however, possible that new plans are
added to the plan library and do not have any rating scores,
which is known as cold start problem, a difficult problem in
collaborative filtering. Our approach can be easily extended
to handling the cold start problem since we can calculate
similarity between plans based on vector representations of
plans and transfer ratings of plans that are already in the plan
library by assuming that humans have similar interests in
similar plans. We calculate ratings r

u,new

of new coming
plans p

new

with respect to user u below:

r
u,new

=

|L|
X

i=1

r
ui

⇤ similarity( ˜V
i

, V 0
new

), (7)

where r
ui

2 R⇤ is the rating of plan p
i

2 L given by Step
4 of Algorithm 1, V 0

new

is the vector of new plan p
new

, and
similarity( ˜V

i

, V 0
new

) is the similarity between plan p
i

and
new plan p

new

, which is defined by the cosine similarity
between their corresponding vectors (which is rescaled to
(0,1]). In this way R⇤ can be extended to a new matrix to
incorporate p

new

. The remaining procedure is the same as
Step 5 of Algorithm 1.

Experiments
To evaluate the effectiveness of our algorithm, we built a
system to simulate real-world applications and synthesized
training and testing data. We generated data in three plan-
ning domains blocks2, depots3, and driverlog3.. The reason
why we used planning domains is it is simple to generate
plans by running an off-the-shelf planner. It is similar to ap-
ply our approach to other domains with historical plans in
hand instead of generation with planners. To generate train-
ing data, we randomly created 5000 planning problems for
each domain, and solved these planning problems with a
planning solver, such as FF4, to produce 5000 plans, whose
length is various (generally from 40 to 200). Features of
datasets are shown in Table 1, where the second column is
the number of plans generated, the third column is the to-
tal number of words (or actions) of all plans, and the last
column is the size of vocabulary used in all plans.

Table 1: Features of datasets
domain #plan #word #vocabulary
blocks 5000 292250 1250
depots 5000 209711 2273
driverlog 5000 179621 1441

In each domain, we generated the dataset with the size of
10000 virtual humans. In order to generate rating scores on
plans, we need to consider the homogeneous preferences on
plans among humans. We divided humans into 100 groups,
with 100 members in each group, and characterized each

3http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-
html/JAIRIPC.html

4https://fai.cs.uni-saarland.de/hoffmann/ff.html



plan p with a vector defined by:

vector(p) =

K

X

i=1

(

1

K
)

i�1w
i

, (8)

where K is the length of plan p, w
i

is the vector represen-
tation of the ith action in plan p. We can see that the defini-
tion of vector(p) can be used to characterize different plans.
For example, two different plans p1 and p2 with swapped
actions have different vectors vector(p1) and vector(p2)
(even though the length of p1 and p2 is identical). Note that
it is possible to explore other definitions of vector represen-
tations of plans. We assume that the rating score given by
human group g (1  g  100) depends on the Gaussian
distribution N (µ

g

, 1), i.e.,

Prop(||vector(p)||) = 1p
2⇡

e�
1
2 (||vector(p)||�µ

g

)2 , (9)

where µ
g

is the expected value of |vector(p)| (||v|| indicates
the norm of vector v), and 1 is the variance. We denote the
mean of all vector representations of plans by

µ̄ =

1

5000

5000
X

i=1

||vector(p
i

)||.

To capture different preferences among groups, we define
µ
g

by: µ
g

=

g

100 µ̄, for each group g from 1 to 100. Note that
we assume humans in the same group have identical pref-
erences (or identical Gaussian distribution) on rating plans.
We generated a matrix of rating scores R by

r
ui

= round-up(5 · Prop(||vector(p
i

)||)),
where round-up(x) indicates x is rounded up into an integer.

In order to generate ground-truth plans to be recognized
with respect to observed action sequences for each human,
we calculated a set of plans that covers the observed actions,
and selected the plan based on Equation (6) by replacing the
r⇤
ui

with the generated rating score r
ui

. We generated 20 ac-
tion sequences (viewed as the observed action sequences)
for each human. We denoted the set of ground-truth plans
corresponding to 20 observed action sequences of each hu-
man (5000 humans in total) by P truth. We further calculated
the plans corresponding to the 20 observed action sequences
using HARE (with a ratio of rating scores missing in the gen-
erated matrix R), which were denoted by P HARE. The accu-
racy of our HARE algorithm is defined by

accuracy =

|P truth \ P HARE|
|P truth| .

In the following subsections, we evaluate our HARE algo-
rithm by varying the ratio of rating scores and the size of ob-
served actions. Note that we randomly selected rating scores
as known rating scores and excluded others from the matrix
of rating scores.

To the best of our knowledge, there are no state-of-the-
art plan recognition approaches that can be directly applied
to our problem. We thus refine plan recognition approaches
off the shelf, such as MARS (Zhuo and Li 2011) and DUP
(Tian, Zhuo, and Kambhampati 2016), to incorporate human
ratings. The refining procedure is shown as follows.

• HA-MARS: MARS aims to recognize team plans from the
plan library given an observed team trace. The high-level
idea of MARS is to build a set of weighted constraints
based on plan libraries and team traces, and solve all of
the weighted constraints by a MAXSAT solver, such as
MaxHS (Davies and Bacchus 2013), discover a subset of
team plans in the plan library to best explain the observed
team traces. To exploit MARS to solve our human-aware
recognition problem, we set the number of team mem-
bers to be one in both plan libraries and team traces, and
viewed human ratings of team plans in the plan library
as a multiplier of the weights of constraints built based
on the corresponding team plans. Different from our plan
recognition problem, MARS assumes positions of miss-
ing actions in observe team traces are known in advance.
We thus provided additional input information about posi-
tions of missing actions in the observed action sequences
when using MARS to solve our recognition problem. Note
that we directly assigned unknown ratings with an aver-
age over all known ratings. We denote the refined MARS
by HA-MARS, short for Human-Aware MARS.

• HA-DUP: DUP aims to learn vector representations of ac-
tions from plan libraries and exploit the representations to
discover underlying complete plans of partially observed
plans. Similar to MARS, DUP assumes positions of miss-
ing actions in observed action sequences are known in ad-
vance. Likewise, we provided additional information of
positions of missing actions in observed action sequences
when using DUP to solve our problem. We also directly
assigned unknown ratings with an average over all known
ratings. Since DUP randomly samples plans to cover ob-
served actions, which are probably not in plan libraries,
we refined the sampling procedure by iteratively resam-
pling plans until the sampled plans belong to plan li-
braries. We viewed the ratings as multipliers of probabil-
ity of sampled plans, i.e., r ⇥ P (p

i

|W ), where r is the
rating score of p

i

and P (p
i

|W ) is the probability of p
i

given vector representations W of actions. We denote the
refined DUP by HA-DUP, indicating Human-Aware DUP.

Accuracy w.r.t. Ratio of Rating Scores
We first evaluated our HARE algorithm by varying ratios of
ratings in R to see the effectiveness of ratings. We compared
our HARE approach to both HA-MARS and HA-DUP. We set
the window of training context c in Equation (1) to be three,
constants �1 and �2 in Equation 3 to be 0.5, and number of
observed actions to be 20 for each observed action sequence.
The results are shown in Figure 2.

From Figure 2, we can see that in all three domains, the
accuracy of HARE is generally higher than both HA-MARS
and HA-DUP, which verifies that our HARE algorithm can
indeed better utilize human preferences (in the form of rat-
ing scores) for recognizing plans from the plan library when
incorporating vector representations of plans with collabo-
rative filtering, i.e., much better than directly calculating an
average over all of the known ratings, as done by HA-MARS
and HA-DUP. Note that both HA-MARS and HA-DUP take
additional information about positions of missing actions in
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Figure 2: Accuracy w.r.t. different ratio of rating scores
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Figure 3: Accuracy w.r.t. different number of actions

the observed action sequences, while HARE does not utilize
any position information of missing actions.

We can also see that both HARE and HA-DUP outper-
form HA-MARS in all three domains. This is because both
HARE and HA-DUP leverage the semantic information of
plans (represented by vector representations) to help dis-
cover underlying plans behind observed actions, and from
the result we can see that the semantic information of plans
can indeed improve the recognition accuracy, compared to
HA-MARS which does not utilize this information. Looking
at the changes of accuracies with respect to the ratio of rat-
ing scores, we can see that all the three algorithms generally
become better when the ratio of available rating scores be-
comes larger in all three domains. This is consistent with
our intuition since the larger the ratio of rating scores is, the
more information is available for better describing the hu-
man preferences.

Accuracy w.r.t. Number of Observed Actions
We next evaluate the performance of our HARE algorithm
with respect to the number of observed actions. Likewise,
we set the context window c used in Equation (1) to be three,
the constants �1 and �2 in Equation 3 to be 0.5 and the ra-
tio of rating scores R to be 0.15. We varied the number of
observed actions from 10 to 30. The results are shown in
Figure 3.

From Figure 3, we find that accuracies of the three ap-
proaches generally become larger when the size of the ob-
served actions increases in all three domains. This is consis-
tent with our intuition, since the more the observed actions
are, the more information is available for them to better dis-

cover the target plans. We can also see that the accuracy of
our HARE algorithm is generally larger than HA-DUP and
HA-MARS in all of the three domains, which verifies that
our HARE algorithm can indeed better leverage rating scores
by incorporating vector representations of plans with collab-
orative filtering, than both HA-DUP and HA-MARS, which
directly calculate an average of ratings over all of the known
ratings. Note that the average length of plans in the plan li-
brary is around 100 which is much larger than the observed
actions.

Handling Cold Start Issue
To see the accuracy of our HARE algorithm when there are
new plans (without any ratings) added into the plan library,
we randomly added 100 new plans to the plan library (their
underlying ratings were also generated according to Equa-
tion (9), but unknown to HARE). Likewise, we set the context
window c used in Equation (1) to be three, the constants �1

and �2 in Equation 3 to be 0.5, the ratio of rating scores R to
be 0.15, and the number of observed actions to be 20. We ran
all of the three approaches in the blocks domain. The accu-
racies of HARE, HA-MARS and HA-DUP are 0.80, 0.58, and
0.62, respectively. This indicates that our HARE approach
can indeed handle the cold start issue better than other ap-
proaches.

Final Remarks
In this paper we propose to recognize plans based on hu-
man preferences in the form of rating scores. We borrow
the ideas of matrix factorization to estimate unknown rat-
ing scores and vector representations of actions and plans
to estimate the probability of a plan given observations. We
provided an algorithm framework to incorporate vector rep-
resentations of plans with collaborative filtering and exhibit
that it is effective on recognizing plans from the plan library,
even though new plans without any ratings are added to the
plan library.

In the future, it would be interesting to consider variable
rating scores. Our approach can be seen as considering a
snap-shot of human rating scores, which can be extended to
accommodating variable rating scores by considering rela-
tionship between rating scores and their corresponding vari-
able rating scores, based on Markov assumptions for exam-
ple. The resulting algorithm can be seen as an evolutionary
model of our approach based on rating scores varied over
time. In addition, in this paper we evaluated our approach in
a synthesized dataset generated from a simulation system. In
the future we hope to collect data from real world applica-
tions, e.g., in travel planning systems, and evaluate the our
approach in the real world dataset.
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